Quiz 2: Multivariable functions and limits

Name:

Section:

1. Consider the function

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

(a) (5 points) Compute the partial derivative of f(x, y) with respect to x

(b) (5 points) sketch the level curves of f(x, y). That is, plot the values of (x, y) such that f(x, y) = c for c = -1, 0, 1.

(c) (5 points) Does the limit as $(x, y) \to (0, 0)$ exist? (Hint: Consider the limit along the path (x(t), y(t)) = (t, mt) for different m).

2. (5 points) Recall that a multivariate function is *Continuous* at a point \vec{a} if $\lim_{(x,y)\to\vec{a}} f(x,y)$ exists, and its value equals $f(\vec{a})$. Give an example of a function where $\lim_{(x,y)\to\vec{0}} f(x,y)$ exists, but f(x,y) is not continuous at zero.