Student Symplectic Seminar Quasihamiltonian G-spaces & loop graps SI: my favorite manifold my favorite manifold is the moduli space of flat G-bondles on a Riemann surface P = {x6 fix a Riemann Surface Z, & a trivial principle G-bundle connection on P is defined by a g=Lie(G) -valued 1-form A = 12(5,g) α this has convature FA=dA+AAAED2(E,g) define $\mathcal{M}_{G}^{H_{q+1}}(\boldsymbol{\Sigma}) = \boldsymbol{\xi} A \boldsymbol{\varepsilon} \Omega(\boldsymbol{\xi}, \boldsymbol{g}) | \boldsymbol{F}_{A} = 03 / \boldsymbol{G} auge + ransforms$ Thm (A+iyah - bott): MG fl+(E) is a symplectic manifold we define $\mathcal{M}_{G}^{\text{flat}}(\varepsilon)$ as an infinite dimensional symplectic reduction let $A = \Omega'(\xi, g)$ be the space of connections, $G = Aut(P) = Maps(\xi, G)$ the grap of gauge transforms A is <u>symplect</u> with symplectic form $cu(\alpha, B) = \int_{S} \langle \alpha \wedge \beta \rangle$ form GGA is hamiltonian action, with mament map M: Ap > Lie(G)* Lie (E) = $\Omega^{\circ}(\varepsilon, g)$, Lie (E) = $\Omega^{2}(\varepsilon, g)$, via pointare duality The moment map is convature: $\mathcal{M}: A \mapsto F_A \in \Omega^2(\mathfrak{s}, \mathfrak{g}) = Lie(\mathfrak{G})^*$ explicitly $3 \in \Omega^{\circ}(\varepsilon, 2)$ generates vector field $V_{3} \models T_{2} = \Omega^{\prime}(\varepsilon, 2)$ by $V_{5} = [3, \alpha] + d 3$ $i_{V_3} \omega = \int_{\Sigma} \langle F_A, 3 \rangle$ symplectic reduction $A_{1/1} = M^{-1}(0)/c = \xi$ flat connections ξ / Guye transforms = $M_{G}^{+1/4}(\xi)$ endows MG (E,G) = All & with a symplectic form As a manifold, we can construct a finite dimensional model via the Riemann-Hilbert correspondence: The only garge invariants of a connection come from monodramy For a flat connection, monodramy is topological The monodromy perspective gives a finite dimnl model:

$$\begin{split} \mathcal{M}_{G}^{\text{full}}(\underline{s}) &= \underbrace{\operatorname{How}\left(\mathcal{M}_{G}(\underline{s}), \underline{G}\right)}_{G} \xrightarrow{(\text{lowage of called by } \\ G \ \text{called } G \ \text{lowage of called by consider a single on box pant } \\ G \ \text{conserved called } G \ \text{lowage of called } G \ \text{lowage of a single on box pant } \\ G \ \text{conserved called } G \ \text{lowage of called } G \ \text$$

a)
$$i_{3}\omega = \langle \omega^{i}(\theta^{i} + \theta^{R}), \overline{s} \rangle$$

b) $d\omega = M^{i} \Sigma$
c) $ker \omega = \xi V_{x} | Ad_{x} + \overline{s} = 0 \}$
first we need the moment map type condition. Instead of specifying Vs as
humitonian vorter fields, we suffice to describe their pairing with ω . This shall
depend only on $\overline{s} \ \Sigma$ the gravity of the norment map \mathcal{K} .
Define the g^{i} valued 1-firm $i_{3}\omega(s) = i_{v_{3}}\omega$ $i_{3}\omega = \Omega(M,g^{s})$
moment map condition should be of the form $i_{3}\omega = M^{i}(\alpha)$ for some $\alpha \in \Omega(\delta,g^{s})$
in particular. $i_{3}\omega (V_{3}) = \alpha(M,V_{3})$
by \mathcal{C} equiviriance $\mathcal{M}_{1}V_{5}$ is the vetor fold on \mathcal{G} generating the conjustion $\alpha(t,\omega)$.
dente the $\overline{y}^{i} \otimes \Omega(V_{3}) = \alpha(M,V_{3})$
by \mathcal{C} equiviriance $\mathcal{M}_{1}V_{5}$ is the vetor fold on \mathcal{G} generating the conjustion $\alpha(t,\omega)$.
dente this by $\overline{s}^{A.}$. Note $\overline{s}^{A.} = \overline{\xi}^{L} - \overline{s}^{R}$ $\vee \mathbb{Z}^{L}$ (conside left invariant with $\overline{\omega}$
 \overline{s}^{R} right invariant vect field
The notional (here of α is the Maker-(arbin form
 $\theta^{L} g$ mass vectors in Tg6 to Te6 29 via left multiplication
 $= \theta^{1}(\overline{s}^{I})_{0} = \overline{s} - \theta^{1}(\overline{s}^{I})_{0} = -Ad_{3}\overline{s}$
Similarly $\theta^{R} - dg^{I}g^{I} = \overline{s} - \theta^{R}(\overline{s}^{I})|_{g} = Ad_{g}\overline{s}$
Let s gives λ check until we find a goal definition for α
 t_{V} $u^{i}(W_{5}_{2})^{i}_{1}^{i} \wedge (\overline{\delta}^{i}, \overline{s}^{i}) (V_{5}_{2})$
 $= \langle \Theta^{1}(\overline{s}^{1}, \overline{s}^{L})|_{\alpha \otimes s} \overline{s} \rangle$
 $(u^{i}(w_{5}_{1})^{i}_{2}(\overline{s}^{1} - \varepsilon^{R}), \overline{s}^{i}) \langle u^{i}(W_{5}_{1})^{i}_{2}(\overline{s}^{1} - \varepsilon^{R}), \overline{s}^{i}) \langle u^{i}(W_{5}_{1})^{i}_{2}(\overline{s}^{1} - \varepsilon^{R}), \overline{s}^{i}) \rangle$
 $= \theta^{1}(\overline{s}^{I}) = \overline{s} - \theta^{R}(\overline{s}^{I})|_{g} = Ad_{g}\overline{s}$
Let s gives λ check until we find a goal definition for α
 $i_{V_{1}}(w(v_{5}_{2})^{i}_{2}^{i} \wedge (\theta^{i}, \overline{s}^{i}) \rangle$
 $(u^{i}(w_{5}_{1})^{i}_{2}^{i}) - (\overline{s}^{i}_{2} Ad_{0}\overline{s}^{i}_{3}) \rangle$
 $(u^{i}(w_{5}_{1})^{i}_{2}^{i}) - (\overline{s}^{i}_{2} Ad_{0}\overline{s}^{i}_{3}) \rangle$
 $i_{W_{1}}(w(v_{5}_{1})^{i}_{2}^{i}) - (\overline{s}^{i}_{2} Ad_{0}\overline{s}^{i}_{3}) \rangle$
 $(u^{i}(w_{5}_{1})^{i}_{2}^{i}) - (\overline{s}^{i}_{2} Ad_$

The numerit map condition also breats hondegenary. Indeed, if $(\Theta^{L}+\Theta^{R})3^{Hd}|_{m(A)}=0$ then $2\sqrt{3}$ $\omega|_{x}=0$. Lie theoretically, $(\Theta^{L}+\Theta^{R})(3^{Hd})|_{m(A)}=0$ whenever $Ad_{m(A)}3+3=0$ impose maximal hondegenary: such 3 yeld the only trend of ω condition C: $trer \omega|_{x} = \xi 3 \in \mathcal{G} |Ad_{m(X)}3+3$

Examples of Q-Hamiltonian G-spaces

- i) Conjugacy Classes of G; denote by C-7G these are the Q Hum version of the coadjoint orbit . G. action: Conjugation
 - moment map: the inclusion M: C > G
 \$\mathbb{W}(3_1^{AJ}, 3_2^{AJ})|_g = \frac{1}{2}(<3_1, Adg 3_2) (3_2, Adg 3_1) (TC generated by 3^{Ad});
- (i) The Double D(G): $D(G) = G \times G$ is a manifold • G - action: $g_{\bullet}(a,b) = (g a g', g b g')$
- Chrowraging for realizing Hum $(\pi, (z), c)$ as moment map endition

- moment map $\mu(qb) = qbq'b'$
- $W = \frac{1}{2} (a'6', b'6'')_{+} \frac{1}{2} (a'6', b'6')_{+} \frac{1}{2} ((a_{5})^{*}0', (a_{5})^{*}0'')_{+} \frac{1}{2} ((a_{5})^{*}0'')_{+} \frac{1}{2} ((a_{5})^{*}0'')_{$

2ER (5,8) 3: Loop groups idea for constructing $\mathcal{M}_{F}^{Flat}(\boldsymbol{z})$: drill out a point let E'= E D for D G disc. This has boundary! $G_2(\varepsilon')$ ($G(\varepsilon')$ is trend of restriction to $\partial \varepsilon'$ (i.e. Acuse transform prevenues bd_{ry}) Define $\mathcal{M}(\Xi') = \mathcal{A}_{flut}(\Xi')/\mathcal{G}_{a}(\Xi') \sim in finite dimensional symplectic manifold$ residual gauge transform: G(2)/G;(2)= Maps(S',G) = LG "Loop group" M(E') is a hamiltenian LG space! What is LG like as a lie grap? Assume G simple, <,> Killing form gELG g: S->G, multiplication pointwise g: g_(G)=g(G).g_(G) $9: 0 \mapsto g(0)$ Lie algebra $Lg = \Omega^{\circ}(S, g)$ $Lg^{*} = \Omega(S, g)$ g*9 for $3 \in Lg$, $d \in Lg^*$ $\langle 3, d \rangle = \int_{1}^{1} \langle 3, d \rangle = \int_{1}^{1} \langle 3, d \rangle d\theta$ LG acts on $\Omega'(s, g)$ by gauge transforms: $g \cdot \chi = g \cdot \chi g + g \cdot dg$ The (co) adjoint action acts as $adg^* \propto = g^2 \propto g$ affine coadjoint action we want to realize the LG-action on $\mathcal{N}(s,g)$ as a sort of radiant action LG has a canonizal central extention LG i.e there is a SES $S' \xrightarrow{\sim} LG = S \xrightarrow{\sim} L$ Think of LG as the total space of a circle bundle over LG This has $L_{G-invariant}$ congive form $F \in \Omega^2(L_G, \mathbb{R})^{L_G}$ Fis determined by it's value at the identity: Flassewent Lg* cunonical central extention defined by $W(\overline{r}, \overline{s}_2) = S_{c1}(\overline{r}, d\overline{s}_2)$ $\overline{\text{let } L_g} := L_ie(\widehat{L_g}) = L_g \bigoplus_{i} R_i$ $\text{ lie bractet } [(3, \lambda), (3', \lambda')] = ([3, 3'], W(3, 3'))$

choose
$$[\alpha, \lambda] \in L_{2}^{\infty}$$
. "Fine action action: for $\tilde{g} \in L_{5}^{\infty}$, w/g its projection to L_{6}^{∞}
Adg⁺(α, λ) = $(g^{-1}\alpha g + \lambda g^{-1}d g, \lambda)$ metric for $\tilde{g} \in L_{5}^{\infty}$, w/g its projection to L_{6}^{∞}
counts from control extention ω
counts from control extention $(\alpha \in L_{2}^{\infty} = \Omega(S, g) = M(S, g))$
The affine action is important because it makes the L6 action nearly free
Define the based loop group $\Omega = \mathcal{L} =$

und
$$d(\sigma, \overline{\sigma}^{1}, \overline{\sigma}) = Hol' d\omega = Hol' 2$$
, so $\overline{\sigma}^{1} d\overline{\omega} = Hol^{*} X$. This hold $\overline{\tau}^{4}$
 $d\overline{\omega} = Hol' X$ on Lg^{1} . There is a committed (boild for such a primitive:
 $\overline{\mathcal{U}} = \int_{0}^{1} L (Hol' \overline{G}, \overline{\sigma}, Hols' \Theta^{+}) \in \Omega^{2}(Lg^{2})$
Finds: $d\overline{z} = \overline{\Theta}^{+} X$
 $\underline{z}_{0}(\sigma, \overline{\Phi}^{+} \overline{\omega}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{s} \in \Omega^{2} (\underline{\sigma}, \underline{s})$
 $\overline{z}_{0}(\sigma, \overline{\Phi}^{+} \overline{\omega}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{s} \in \Omega^{2} (\underline{\sigma}, \underline{s})$
 $\overline{z}_{0}(\sigma, \overline{\Phi}^{+} \overline{\omega}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{s} \in \Omega^{2} (\underline{\sigma}, \underline{s})$
 $\overline{z}_{0}(\sigma, \overline{\Phi}^{+} \overline{\omega}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{s} \in \Omega^{2} (\underline{\sigma}, \underline{s})$
 $\overline{z}_{0}(\sigma, \overline{\Phi}^{+} \overline{\omega}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{s} \in \Omega^{2} (\underline{\sigma}, \underline{s})$
 $\overline{z}_{0}(\sigma, \overline{\Phi}^{+} \overline{\omega}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{s} \in \Omega^{2} (\underline{\sigma}, \underline{s})$
 $\overline{U} = (\overline{\sigma}^{+} \overline{\omega}, \underline{s}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{s} \in \Omega^{2} (\underline{\sigma}, \underline{s}) = (0, s_{0}, \sigma, \overline{\Phi}^{+} \overline{\omega})$
 $\overline{U} = (\overline{\sigma}^{+} \overline{\omega}, \underline{s}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{\sigma}^{+} \overline{\omega} = W^{+}(\underline{\omega})$
 $\overline{U} = (\overline{\sigma}^{+} \overline{\omega}, \underline{s}) = (W^{+}(\overline{G} + 6^{4}), \overline{s})$ in pertoder, for $\overline{\sigma}^{+} \overline{\omega} = W^{+}(\underline{\omega})$
 $\overline{U} = (\overline{\sigma}^{+} \overline{\omega}, \underline{s}) = (W^{+}(\overline{\omega} + 6^{4}), \overline{s})$
 $\overline{U} = (W^{+}(\overline{\omega} + 6^{4}), \overline{s})$ which for $\overline{\sigma}^{+} \overline{\omega} = W^{+}(\underline{\omega})$
 $\overline{U} = (W^{+}(\overline{\omega}), \overline{\omega})$ is a constraint of $\overline{L}^{+} \overline{\omega}$ is a constraint of $\underline{L}^{+} \underline{\sigma}^{+} \overline{\omega}$
 $\overline{U} = W^{+}(\overline{\omega})$ is a constraint $\overline{U} = \overline{U} = \overline{U} = W^{+}(\overline{\omega})$ is a constraint $\overline{U} = \overline{U} = W^{+}(\overline{\omega})$ is a constraint $\overline{U} = \overline{U} = W^{+}(\overline{\omega})$ is a constraint $\overline{U} = \overline{U} = W^{+}(\overline{\omega})$ is a $W^{+}(\overline{\omega}) = \overline{U} = W^{+}(\overline{\omega})$ is a $W^{+}(\overline{\omega}) = W^{+}(\overline{\omega})$
 $\overline{U} = W^{+}(\overline{\omega}) = W^{+}(\overline{\omega}) = \overline{U} = \overline{U} = W^{+}(\overline{\omega}) = \overline{U} = \overline{$

