

last week, Oliver editmiar posted to arxiv a pair of papers:

Packing stability and the subleading asymptotics of symplectic Weyl laws

https://arxiv.org/abs/2509.15390

Smooth perfectness of Hamiltonian diffeomorphism groups

https://arxiv.org/abs/2509.16327

together these resolve the packing stability problem in dimension 4. in this talk, I will put this problem into context and give a taste of the (rather involved) proof.

Part 1: Symplectic Packing & Weyl laws

we are interested in embedding problems. Let $\beta^{2n}(\lambda) = \frac{2}{3} \pi(|z_1|^2 + |z_2|^2) \leq \lambda^2 \frac{2}{3} \subset C^2$

Pacting problem: for (M, w) a symplectic manifold, what is the largest 1 s.t

there is a symplectic embedding 4 B2n(1) 4 M?

Define the packing density $2'_{N}(M) = \sup_{X \in \mathcal{X}} \frac{Vol(UB^{2n}(X))}{Vol(M)} | \exists symplectic embedding}$

 $V_n(M)$ measures the portion of M that can be filled by n equal-radius symplectic balls

The analogous problem for Riemannian geometry is rigid. Pack circles into a circle:

(consectured)
optimal
pacting

Riermannian Pacting
density $V_n^{Riem}(g_n^{(i)})$ 2

7

18

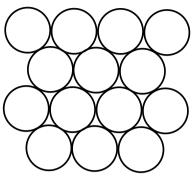
0.777

0.76

N = 5/0 $V_{5/0}^{\text{Riem}}(\beta^2(i)) \ge 0.85$

as N gets very large, the optimal pacting looks more lite a hexagonal lattice:

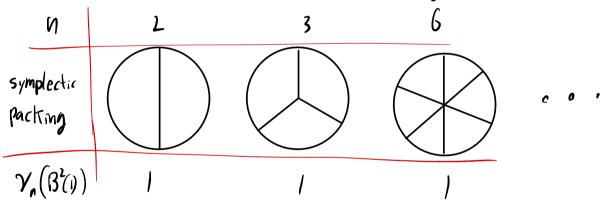
the hexagon lattice is the optimal Pacting of Circles in a plane



Density 2(R)= 1/112 2 0.91

Thm: $\lim_{n\to\infty} V_n^{Riem}(R^2(n)) = V^{Riem}(IR^2)$

in contrast, volume preserving packing is flexible, U volume = 1 always in 2D, this is the same as symplectic packing.



Note that the regions \int have corners, so they are not the image of $B^2(1)=$ under a sympler to mur phism...

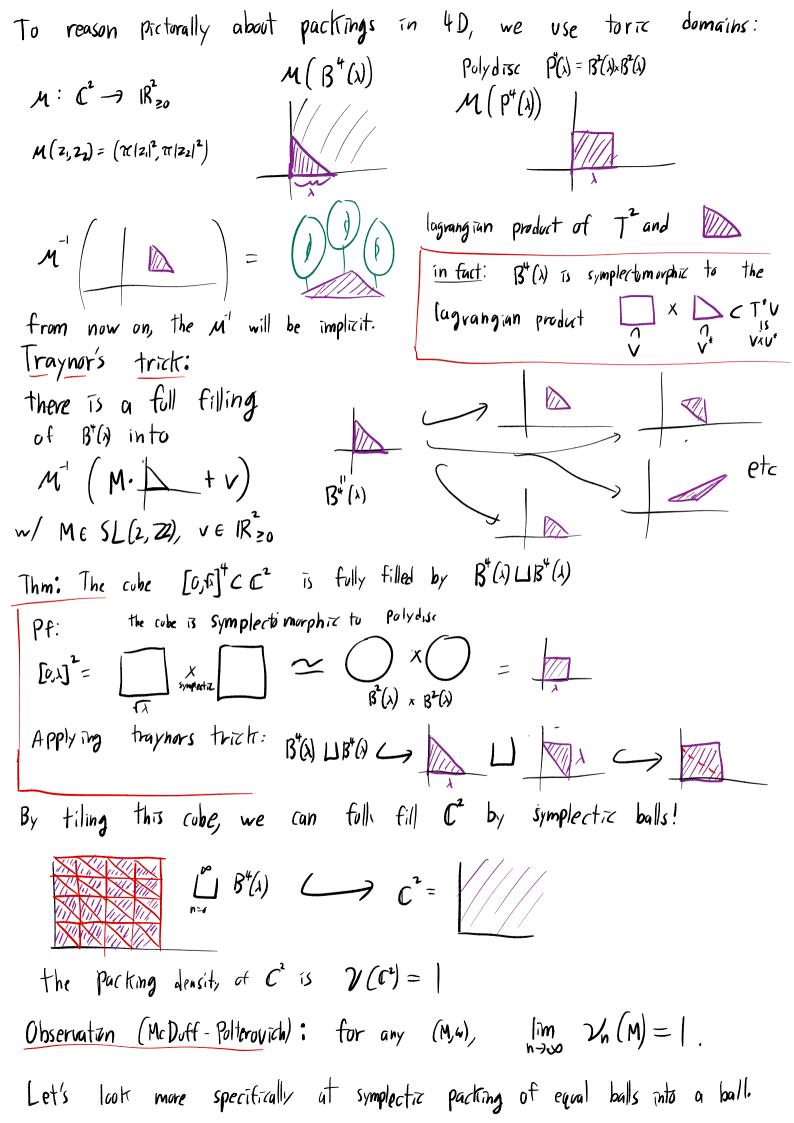
instead, it is shorthand for a sequence of embeddings

 $\Psi_i : \mathcal{B}^2(\lambda_i) \to \text{Vol } \mathcal{B}(\lambda_i) \longrightarrow \text{vol } (\mathcal{D})$

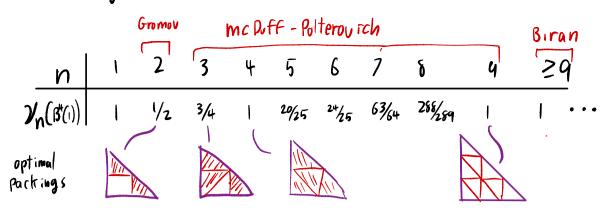
We say the region () is "fully filled" by a ball.

Parting problems of the three worlds:

Volume preserving > Symplectic > Ricmanian
too flexible just right ! too Rigid
(boring)
(hard)



Thm: The packing densities of B4(1) are:



for all $n \ge 9$, $\beta^4(i)$ is fully filled by n equal balls! The limiting value $\gamma_n(\beta^4(i) \rightarrow 1)$ is achieved after finite n.

Def: (M, w) has Pacting Stability if 3 N s.+ Vn>N, Vn (M) = 1

At the time, it was conjectured that every (Mw), w/ or w/o boundary, had packing stability. This was supported by a stream of results.

Thm: The following classes of symplectic manifold have packing stability:

- balls B⁺(λ) > (Biran '96) using Mc Dutt's connection between ball embeddings & Blow ups. Constructs
 (CIP², ω) > T-curve on CP² using SW = GR, then modifies symplectic form using J-curve to construct symplectic structure on the blowup. (inflation)
- · clused, rational 4-manifolds (Biran 99) uses Donaldson submanifolds + inflation
- · all closed rational 4-manifelds (Buse-Hind 13) Donaldson submanifelds w/ induction on dimension uses ECH to find embeddings between ellipsoids
- 4D ellipsoids + Polydiscs ? (Buse, hind, Opshtein 16) fully fills the 4-manifold by ellipsoids + "Pseudoall closed 4-manifolds halls", then proves pacting stability for these canonical domains

the * results we will use later

Inspired by Riemannian packing, we expect the rate of an vergence to the bulk packing density to be controlled by the behavor of the bandary. This was confirmed in the first example of the failure of packing stability:

Thm (Dan C.6, Hind, 23): There is a Donain $X \subset \mathbb{R}^4$ without pacting stability, where X has fractal boundary

Oliver's paper essentially resolves the question in dimension 4:

Thm (Edtmar 25): every (Ma) w/ smooth boundary has packing stability

There is a domain XCIR4 w/o parking stability w/ C²⁻⁸ boundary.

Pacting stability & Weyl laws

obstructions to pacting stability are symplectic rigidity phemonema. We detect these w/ a symplectic capacity. If X a domain w/ packing stability then there is an embedding $\square B^{4}(x) \hookrightarrow X$ w/ $n \ vol(B^{4}(x)) = vol(x)$, for every sufficiently large n. so $C(x) \ge C(L^n B^n(x))$, want a capacity which behaves well w/ Disjoint union.

Def: The alternate ECH capacities CK are defined by a minimax problem: on J-curves with point constraints Energy of J-corne

 $C_{K}(X) = \begin{cases} Sup & \text{inf} \\ X_{(1,1)}X_{K} \in X \end{cases} \quad \text{u.e.} M^{T}(\bar{X}_{J}X_{1,1}, X_{K}) \\ \text{Transpatible a.c.s} \quad \text{moduli of } J\text{-curves in symplectic completion} \end{cases}$

Passing through X, ..., XH

Thm (Hutchings 22) C_{K} are symplectic rapacities, and satisfy the same axioms as ECH capacities. In particular:

Distribute to Distribute axiom: $C_{K}(X_{1}\sqcup..\sqcup X_{n})=\max_{X_{i}\in K_{i}}\sum_{X_{i}}C_{K_{i}}(X_{i})$ pts among n disjoint regions

The Disjoint union axiom tolkers immediatly from the minimax.

K points in

the total energy is additive $\mathcal{E}(u) = \mathcal{E}\mathcal{E}(u|\bar{\chi})$

so maximizing over X is equivently first maximizing over Xi then maximizing over choices of distributing {x,-, xii} into Xi.

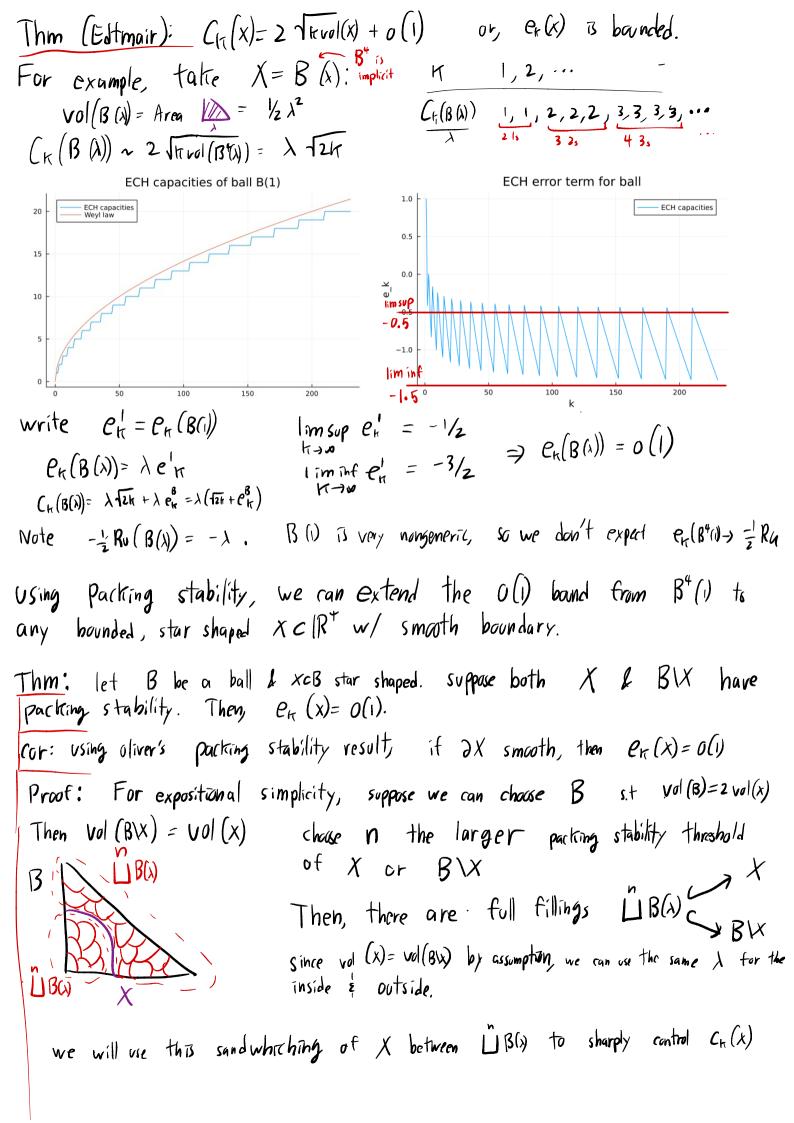
Weyl law: let XCIR4 be a compact domain w/ smooth boundary.

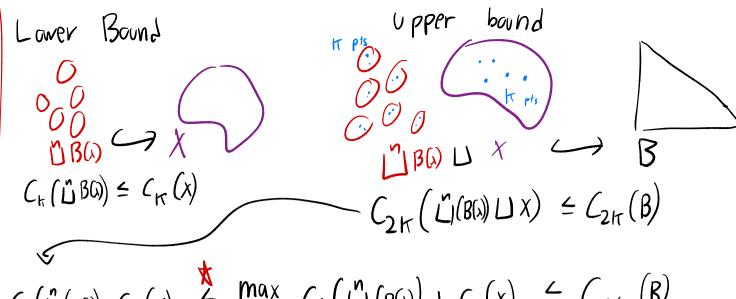
$$C_{tr}(x) = 2\sqrt{\frac{1}{tr} vol(x)} + o(-1)$$

define the error $e_H(x) = C_H(x) - 2 \sqrt{H \text{ vol}(x)}$ subleading term

Conjecture (Hutchings): if X star shaped & generic, $\lim_{k\to\infty} e_k(x) = \frac{-1}{2} Ru(x)$

Ru(X) is the Ruelle invariant a masure of aug rotation of the Reeb flow. Think of Ru(X) as an intrensially symplectiz measure of curvature of DX.





$$C_{h}(\mathring{\square}(B(\lambda))+C_{h}(x)) \stackrel{!}{=} \max_{i+j=2h} C_{i}(\mathring{\square}(B(\lambda))+C_{j}(x)) \stackrel{!}{=} C_{2h}(B)$$

all together,
$$C_{t}(\mathring{D}B(\lambda)) \leq C_{t}(x) \leq C_{2t}(B) - C_{t}(\mathring{D}(\lambda))$$

Remark: we expect the inequality to be nearly sharp i.e the optimal i, 5 for the maximum is i=j=k. Asymptotically, its best to div up the 21 points in C24 according to the volumes of the connected components. So, this is close to the best bound we can get on $C_K(x)$.

Next we compute
$$C_{tt}(\square BG) = \max_{z \mid t_i = t_t} \sum_{k_i = t_t}^{n} C_{k_i}(BG)$$

lower bound: max $\mathcal{E}_{K_i}(B(x)) \geq \mathcal{E}_{K_i}(B(x))$ Oistribute points evenly amongst the Balls. we expect this to give the best bound.

$$C_{K}(\ddot{\Box}BG)) \geq n \cdot C_{K/N}(BG) = n \cdot \lambda \left(\sqrt{12K/N} + e_{K}'\right) = \lambda \left(\sqrt{12K/N} + ne_{K}'\right)$$

$$= 2\sqrt{K} \text{ vol}(\ddot{\Box}BG) + \lambda ne_{K}' \qquad O(i) \text{ terms}$$

upper Bound: use packing stability! If nz9, I full filling \square $B(\lambda) \subseteq B(\lambda)$ where $vol B(\lambda) = vol (\square B(\lambda))$ $\chi^2/2 = n \lambda^2/2 \Rightarrow \chi = \lambda \sqrt{n}$ $C_{\kappa} \left(\stackrel{h}{\sqcup} (B \square) \right) \leq C_{\kappa} \left(B (\lambda + n) \right) = \lambda + n \left(\frac{1}{12\kappa} + e_{\kappa}^{1/2} \right)$

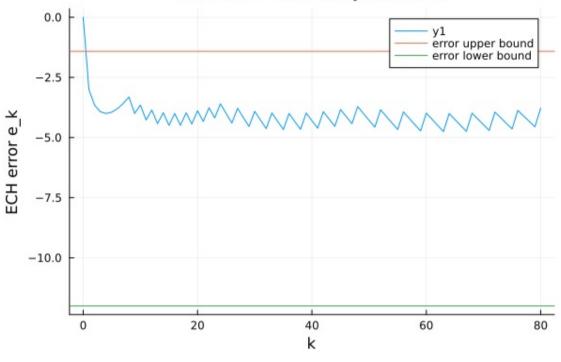
All together:
$$\lambda \sqrt{2kn} + \lambda \ln e_{h} \subseteq G_{r}(\square B(\lambda)) \subseteq \lambda \sqrt{2kn} + \lambda \sqrt{\ln e_{h}}$$

$$= \sum_{r} G_{r}(\square B(\lambda)) = \sqrt{2kr} \log(\square B(\lambda)) + O(1)$$

note that we have control over the error terms in terms of n. using $\liminf_{n \to \infty} e_n^8 = -\frac{3}{2}$ $\limsup_{n \to \infty} e_n^8 = -\frac{1}{2}$

we get (iminf ex(UBG)) = - 3 An (im sup Px(UBG)) = - 1/2 An

ECH error for 8 disjoint balls



Potting everything together:

$$C_{h}(\mathring{\square}B(\lambda)) \leq C_{h}(x) \leq C_{2h}(B) - C_{h}(\mathring{\square}(B(\lambda)))$$

$$2\sqrt{|\nabla Vol(\square B(\lambda))|} + \lambda \ln e_{\eta} \leq C_{\kappa}(x) \leq (2\sqrt{2\pi} \operatorname{Vol(B)} + g_{\kappa}(B)) - (2\sqrt{2\pi} \operatorname{Vol(\square B(\lambda)}) + \lambda \ln e_{\eta})$$

$$\operatorname{Using} \operatorname{Vol}(\square B(\lambda)) = \operatorname{Vol}(x) = \operatorname{Vol}(B)/2,$$

$$2\sqrt{\operatorname{tr} \operatorname{vd}(X)} + \lambda \operatorname{n} e_{\operatorname{H}} \leq C_{\operatorname{H}}(X) \leq \left(2\sqrt{\operatorname{4k} \operatorname{vd}(X)} + C_{\operatorname{2k}}(B)\right) - \left(2\sqrt{\operatorname{4k} \operatorname{vd}(X)} + \lambda \operatorname{4n} e_{\operatorname{H}}^{1}\right)$$

$$\Rightarrow e_h(x) = o(1)$$

12 n vol (x) en = en (x) = 12 vol (x) ein - 12 vol (x) en

While we're here, let's figure out bounds on $e_{\kappa}(x)$, we need to express above $\kappa \lambda^2 /_2 = Vol(\tilde{D}B(x)) = Vol(x)$ $\Rightarrow \lambda = \sqrt{2 Vol(x)}$ in terms of $\kappa \lambda^2 /_2 = Vol(\tilde{D}B(x)) = Vol(x)$ $\Rightarrow \lambda = \sqrt{2 Vol(x)}$ if $\kappa \lambda^2 /_2 = Vol(\tilde{D}B(x)) = Vol(x) = Vol(x) = \lambda = \sqrt{2 Vol(x)}$. So, $\kappa \lambda^2 /_2 = Vol(x) = Vol(x) = \lambda = \sqrt{2 Vol(x)}$. So, $\kappa \lambda^2 /_2 = Vol(x) = Vol(x) = \lambda = \sqrt{2 Vol(x)}$.

using
$$e_{k}^{\prime}=-\frac{3}{2}$$

using $e_{k}^{\prime}=-\frac{1}{2}$

$$\lim_{K\to\infty} \inf C_K(x) \geq - \ln \cdot \frac{3}{2} + 2 \operatorname{vol}(x)$$

$$\lim_{K\to\infty} \sup C_K(x) \leq + \sqrt{2} \operatorname{vol}(x)$$

$$\lim_{K\to\infty} \sup C_K(x) \leq + \sqrt{2} \operatorname{vol}(x)$$

Remarks:

- The O(1) bound obtained from the proof depends on the packing stability threshold N. smaller threshold => better bound on error
- if $e_{t}(x) \rightarrow Ru(x)$, then the $N \gtrsim Ru(x)^{2}$ larger Ruelle invariant \Rightarrow larger stability threshold

~ Counter examples to packing Stability ~

We saw X has Packing stability $\Rightarrow e_{tr}(x) = o(1)$ contrapositivly $\lim_{k \to \infty} |e_{tr}(x)| = o(1)$ $\Rightarrow \Rightarrow X$ does not have packing stability.

Thm (Dan C.G. Hind 23): The toric domain $X_{\Omega} = \Lambda^{-1}(\Omega)$ does not have packing stability

decays as XP 14P42

Ball gets sturt

Intritivly, this domain is like a symplectic cylinder whose width limits to Zero as you go to infinity. By bromov non-squeezing, a fixed width ball can only get so deep into the tube before getting stuck. No matter how small the balls, you can't fill the end of the tube, so you don't expect packing stability

X_a is unbounded, so is hard to wart with. Though, X_a is symplectumorphic to a bounded domain.

" sphaghetti murphism"

fit 12 into unit disc by "swirling" around Can do something similar to Xa w/a symplecto mouphism

2 X2 inbounded symplectomorphism 22 not smooth no free lunch "

 X_1 has $P_{r_1}(z) \rightarrow \infty$ by solving combinatorial problem from the toric domain in fact, if Ω decays little x^{-p} , $e_{\pi}(z) \sim -H^{1/2}p$, because ∂Z has minimum ∂Z has minimum ∂Z .

measure dimension of a set by the volume of points within d wo vol & d => codim. 2

d of 2Z

let V_d(22) he the volume of Z within distance different vol or d => codim. I W//// vol ad => codim. 0

Def: The inner minkarski dimension of 22 $\dim_{\min} \left(\frac{\partial^2}{\partial z^2} \right) = 4 - \lim_{d \to 0} \inf_{\ln d} \frac{\ln \left(\frac{\partial^2}{\partial z^2} \right)}{\ln d}$

Remarks: - if $V_d(z) = d^{\alpha} + o(d^{\alpha})$, $dim_{min}(\partial z) = 4 - \alpha$. The mintroustri dimension measures decay rate of volume near the boundary.

- If MCZ B smooth of codimension d, then Vo(n) ~ Jd.
- this is independent of metric on 1R4

- for
$$\chi_{\Omega} = \frac{P \in (1,2)}{-x^{-P}}$$
, $\dim_{Min}(\partial \chi_{\Omega}) = 2 + \frac{2}{P} \in (3,4)$
Dimension > 3 body!

The minkowski dimension of 22 limits the growth rate of PK: Thm (Fractal Weyl law): if $dim_{min}(\partial z) = d$, then $|e_{k}(z)| \leq k^{\frac{d-2}{4}} de[3,4]$

Or... if you ever see a domain Z w/ PH(z)~Hd for d>1/4, then 22 must have mintranski dimension >3. Detecting fractals w/ ECH.

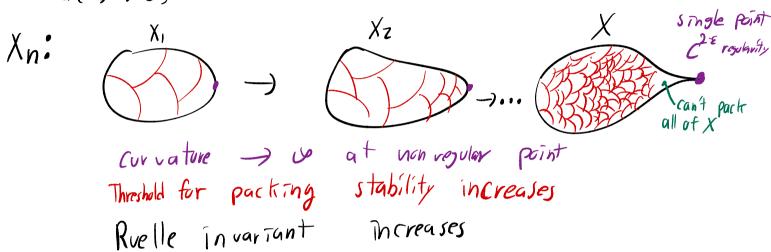
"Proof: follow usual proof of we'y law: Increasing resolution near boundary, for smooth houndary, this gets us to 101, 10

If the volume decays study (extra large mintensiti dimension), then we need to treep many more polydiscs. This matter our ball packing less efficient, & gives us a worse bound on ex.

Edtmair constructed a domain $X \subset \mathbb{R}^4$ w/ $\partial X \in \mathbb{C}'$ for all $d \leq 1$, w/ $\mathcal{C}_{tt}(X) \to \infty$. Hence X does not have packing stability, showing that you held at least a \mathbb{C}^2 boundary for guaranteed Packing stability. Properties of this example:

-2 X is smooth outside of I point

- X is constructed from a sequence of C domains Xn. The cumature of $\partial Xn \to \infty$ only at the point of non-smoothness
- The packing stability threshold of Xn) us as n o
- Ru (Xn) -> co, in accordance with michaels conjecture



Moral of the Story:

- · Packing stability => uniterm error bound on ECH way law
- · Packing stability / ECH error are Boundary Phanonena
- As boundary Curvature is larger, stability / Each error sets werse
 Ly packag stability requires smaller balls
 Ly ECH error term gets larger

Part 2: Proving Packing Stability

Recall Oliver's Packing stability theorem

Thm: every Symplectic 4-manifold (M, w) with smooth boundary has packing stability to prove this, we need to decompose (M, w) into simple pieces with packing stability.

The Key idea: Decompose (M,w) using the algebraic structure of the Hamiltonian diffeomorphism group Ham (M)

Toy model: let H, be a family of hamiltonians on 5, H1: [0] x5= 1R

Fix ω an area form on S. let $M = |R \times [a_1] \times S^2$ with symplectic form $\Omega = dsadt + a$

> $D(H_{t},C) = \{(s,t,p) \in M \mid C \leq s \leq H_{t}(p) \} \subset M$ Region below Graph of Ht, above C

Thm: for C sufficently negative, D(H+, C) can be fully filled by Balls and polydiscs

Example: choose polar coordinates (2,6) on 5, 26[0,1]

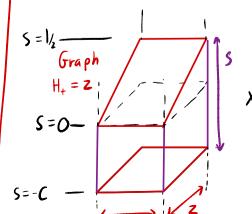
define H+(Z,G) = 12 the standard height function

we can describe the Pacting of D(12,C) explicitly

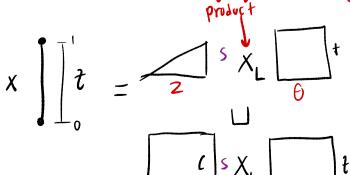
first, use polar coordinates to project 5- {NP, SP3 -> 5'x(0,1)

Next, cut along $\theta=0$ to obtain a rectangle (01) $x(0.2\pi)$

In these coordinates, D(Z,,C) louks litre



That is, P(z,c) is fully filled by $B^*(12) \sqcup B(12) \sqcup P^*(c,l)$.



Z ellipsoid

 $M = |R \times [0,1] \times S^2$ Graph (H) Sek

 $D(H_{t,C})$

Remark: Both balls and polydiscs have parting stability. It's not so simple to show that something fully filled by balls / polydiscs has parting stability e.g. $B^{4}(0)$ is only fully filled by $B^{4}(0)$ when $-vol(B^{4}(0))=vol(B^{4}(0))$ if disjoint agree of $B^{4}(0)$ fully fill $B^{4}(0) \sqcup P^{4}(c)$, then $vol(B^{4}(0))=vol(B^{4}(0))=vol(P^{4}(c))$. This is only passible if $\frac{vol(B^{4}(0))}{vol(P^{4}(c))}$ is rational $\frac{1}{2}$ a little too much to hope for. Oliver circum wents this by using the decomposition into balls L polydiscs to fully fill (M, ω) ω a single ellipsoid, then pacting the ellipsoid.

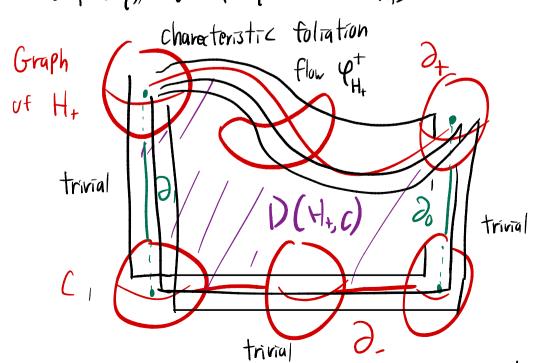
When are two domains $D(H^{0}_{t}, C) L D(H^{4}_{t}, C)$ symplectomorphic?

If there is a family of symplectomorphisms $U^{4}:M = s$. $U^{4}:D(H^{4}_{t}, C) = vol(H^{4}_{t}, C) = vol(H^{4}_{t}, C) = vol(H^{4}_{t}, C)$

2. The chareteristic foliations of D(H+, c) & D(H+, c) agree

Recall for $X \subset (M, \omega)$, the charecteristiz foliation Y on ∂X is the foliation integrating the distrabution then $\omega|_{T \ni X}$. Charecteristic foliation by Reeb orbits: of ∂X of ∂X we can explicitly describe the charectistic foliation of $D(H_t, C)$:

On Graph (H_t) , $Y = \langle H_t \partial_s + \partial_t + X_{H_t} \rangle$



 $\partial D(H_{t}, C)$ has 4 parts: $-\partial_{+}D = Graph H$ $-\partial_{-}D = C$ $-\partial_{0}D = S^{2} \times \{G\} \times |R| \cap D$ $-\partial_{1}D = S^{2} \times \{G\} \times |R| \cap D$ on $\partial_{0}D$, $\mathcal{F} = \langle \partial_{5} \rangle$

on ∂_{0}, D , $\mathcal{F} = \langle \partial_{5} \rangle$ on $\partial_{-}D$, $\mathcal{F} = \langle \partial_{+} \rangle$

First return map of I is flow PH of XH

So we shall think of $\partial D(H_{t},C)$ as the mapping torus of $Y'_{H_{t}}$ $D(H'_{t},C)$ symplectimorphic to $D(H'_{t},C) \Rightarrow Y'_{H'_{t}} \times Y'_{H_{t}}$ have same mapping torus $\Rightarrow \varphi'_{H''_{t}} = \varphi'_{H'_{t}} \quad (qp \text{ to conjugation})$

Thm: let $D^* = D(H^{\lambda}_{+}, d)$. If H^{λ}_{+} satisfies:

A. vol (D^{λ}) independent of λ \Rightarrow $\Psi^{\lambda}: D^{o} \to D^{\lambda}$ B. Y^{μ}_{+} independent of λ Proof Sketch:

step 1: use condition B to build a map $\Psi^{\lambda}: \partial D^{\circ} \to \partial D^{\lambda}$ which preserves $\omega |_{\partial D}$. This extends to a symplectomorphism of ubhas of ∂D , b similarly to the complement $M \setminus D^{\circ} \to M \setminus D^{\lambda}$ step 2: use moser argument to extend Ψ^{λ} into the interior of D^{λ} . This uses condition A to ensure $[\Psi^{\lambda} :_{\partial D}] \in H_2(D^{\lambda}, \partial D^{\lambda})$ is constant.

for our example $H_{+}(z,G)=\frac{1}{2}z$, time I flow is rotation by π around the poles for any H_{+} w/ time I flow conjugate to rotation by π , $SH_{+}=S^{\frac{1}{2}z}=\frac{1}{4}$, $D(H_{+},C)$ symplecto marphize to $D(\frac{1}{2}z,C)$, so $D(H_{+},C)$ decomposes as balls & polydics (& has packing shall-ty). Key insight: an arbitrary $\Psi \in \text{Ham}(S^{2},\omega)$ can be decomposed into terms $\chi_{0}\Psi_{12}^{1} \circ \chi^{-1}$. Thum (Banyaga) Hum (S^{2},ω) is a simple group. I.e, it has no normal proper subgroups

Correlarry: for a fixed $\Psi \in \text{Ham}(s^2, \omega)$, ronsider the subgroup $N(\Psi_0)$ generated by $\chi_0 = \chi_0 = \chi_0$

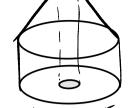
In particular, take 40 = 41/2

Let's apply this to $D(H_+, C)$. Lecompose $\Psi'_{H_+} = (\chi_n \circ Y'_2 \circ \chi_n) \circ ... \circ (\chi_1 \circ Y'_2 \circ \chi'_1)$ Then, choose a careful Hamiltonian \hat{H}_+ w/ same time I map which runs through each term of the decomposition one step at a time: 2,0 Pz/2023 D (H+, C) Symplectinaphic Now decom pose into segments: $\chi_{i^0} \varphi_{z_2^0} \chi_{z_1^0}$ X, 042, 02, -1 full filling D(4,c) 6 te (0,1/n) te(1/2, 2/n) helt send $(s,t) \xrightarrow{\sim} (s_n, n+)$ each D(Z)(D) decompose into balls & pulydace 50 D (Ht, C) decomposes too, for suttiently hegative C. The constructed hamiltonian G+ asscilates of order n, # of terms in the Hamiltonian deamposition $D(H_n, C) \leftarrow \stackrel{n}{\sqcup} D \left(\frac{2}{2}, \frac{C}{n}\right)$ The larger 10, the smaller the heeded C. This proves subgraphs of Hamiltonian on 5 can be decomposed me

To Decempose an arbitrary (M*, w) into balls & polydiscs, need to first split (M, w) into subgraphs of hamiltonians. we can't always use sphans.

Instead, we use subgraphs over annuli.

The Hamiltonian which generate rold rotation has subgraph



- Symplectic Fristim"

- Olivers other

Ingredients for Proving packing stability:

- Analogue of Banyaga's simplicity result for Ham (1967) —
- Control over # of tems in Hamiltonian decompaition, using Convern.
- -Generalize above argument from spheres to annuli, to split a sympletic trustum into balls & poly discs
- Method of decomposing (M, w) into subgraphs of annuli, C-close to the standard votation (split into symplectiz frustrum)
- Method for gluing together filling by balls & polydisc into full filling by single, very long & strinny ellipsoid.