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ingStability's The Hamiltonian
&

Grouptempha
last week

,
Oliver edtmiar posted to arXiv a pair of papers:

together these resolve the packing stability problem in

dimension 4 .In this fall, I will put this problem into context

and give a taste of the (rather involved) proof.

Part1 : Symplectic Packing's Weyl Laws
we are interested in embedding problems. let B"(x)=/+ 1.1)3 CK2

Packing Problem : for (MYw) a symplectic manifold
,
what is the largest & st

-

there is a symplectic embedding &B
*

(1) 4 M ?
-I Define the pating density 2(M) = SupSB/I completi embeda3Wi(x) 4 M

HMm measures the portion of M that can be filled by n equal-radius symplectic balls

The analagous problem for Riemannian geometry is rigid. Pack circles into a circle :

stored
2 7 Is

optimal
packing S

-RiemannianPackingatelldensity 0 . 5 8
. 777 0 . 76



as N gets very large, the optimal packing looks more like a hexagonal lattice :

Riem

N = 510 V (B2(1) - 0 .85... the hexagon lattice is the optimal510

Packing of circles in a plane

Density= = 0 .
91

~thm: lim 2Ring/) = 2 Riem(1R2)
n ->X

in contrast
,
volume preserving packing is texible , &valume - I always

in 2D
,
this is the same as symplectic packing.

3 G

- -

packing

Vn(BYD) 1

Note that the regions I have corners
,

so they are not the

image of Bl = under a symples tomorphism...

insteaI b, it is shorthand for a sequence of embedding↑:: B(x) -> 12 vol B(i) rd(X)
We say the region & is "fully filled" by a ball.

Packing problems Volume preserving> Symplestic > Riemanian
of the three worlds :

too flexible just right I too Rigid

(boring Chard)



To reason picturally about packings in 4D
,

we use toric domains :

u(B"(x) Polydisc P(x) = B(NxB2()

M: -> 120

M(z,22) = (n (2,1
, + 122/2 # (

~= Qof th
from now on

,
the M will be implicit. lagrangian product &X & C T*

↑ viv
Traynor's Frisk:
--

there is a full filling
of BP(X) into #M" (M ·X + v) B

+ (x)

~/ MESL(2,
2)

,
ve RRso

Thm: The cobe CO,J
*
C is fully filled by B*CWBY ()

-

Pf :
the cobe is symplectomorphic to polydiss

! [cx]=& = 0x0 = #
M B2(x) x B2(x)

Applying traynors trick :

-
B)B

By tiling this cobe
,

we can full fill &2 by symplectic balls !

=
the packing density of " is U( = 1

~deservation (McDoff-Polterovich) : for any (Ma),m Un(M) = 1
·

Let's look more specifically at symplectic packing of equal balls into a ball .



Thm : The packing densities of B"11 are :

Gromov mcDuff-Polterovich Biran
M M

N
I 2-45655429

Un(B*(1) 12 3/ 1 2015 24563/42889 11 ...

optimalbackings#
for all n19 · BPS1 is fully filled by n equal balls! The limiting
value In(BY-1 is achieved after finite n.

Lef: (M,w) has Baking Stability if JN st UnaN
, Un (M) =

At the time
,
it was conjectured that every (M,W), wh or who boundary,

had packing stability. This was supported by a stream of results.

Thm : The following classes of symplectic manifold have packing stability :
-

1 ball
*
BY( 2 (Bran 96) using McDuff's connection between ball embeddings' Blowups .

Constructs

· (CIP2
,
w) T-curve on KIP2 Using SW =GR

,
then modifies symplectic form using J-curve to construct

symplectic structure on the blowp. (inflation

· closed
,
rational 4-manifolds (Biran '99) uses Donaldson submanifolds + inflation

· all closed rational 4-manifolds (Buse-Hind13) Donaldson submanifolds w/ induction on dimension

uses ECH to find embeddings between ellipsoids

· 4D
*
ellipsoids +↓ Polydiss3 Behind,Ophinfullyfils the4-manifeby ellipsoids

+oa

· all closed 4-manifolds

the * results we will use later

Inspired by Riemannian packing ,
we expect the rate of convergence to the

bulk packing density to be controlled by the behavor of the bondary. This

was confirmed in the first example of the failure of packing stability :

Thm /Dan C.
G
,
Hind,23) : There is a Domain XCIRY without packing stability,

-

#whereX has fractal boundary
Oliver's paper essentially resolves the question in dimension 4 :

Ihm(Edtmiar25) : every (MYw) w/ Smooth boundary has packing stability

Atheris a domain XCIR" w/ packing stability w/C2" boundary.



Packing Stability Weyl laws

obstructions to packing stability are symplectic rigidity phemonema. We detect these w/
a symplestic capacity. If X a domain w/packing stability

,

then there is an

embedding [BY(x)4 X w/nvol(BY(X)lvol(X)
,

for every sufficiently large n.

so((X) = ((EBYly want a capacity which behaves well w/ Disjoint unih.

Lef : The alternate ECH capacities CN are defined by a minimax problem :

on J-curves with point constraints
↓ Energy of T-corre

sup inf E(u)((X) =

X 1
,
:

,XkEX utMY(X,x . ·, Yn)
T compatible a .

C.S & modeli of 5-curves in symplestic completion
Passing through X, ..., XK

#thm(Hutchings22) Cn are symplectic capacities, and satisfy the same

as ECH capacities . In particular :
M Distribute It-

axioms

Disjoint Union axiom: C + (X,
W ...Xn) = max [Cn (Xi) Ots among

Eki = I disjoint regions
the Disjoint unith axiom follows immediatly from the minimax.

k points in X ,
---- Xn

X = ⑧ ~() wE)
Ki points in Xi

,

↑I ~/[ki =I

the total energy is additive E(u) = [E(u(x)
so maximizing over X is equirently first maximizing over Xi, then

maximizing over choices of distributing 3X, ..., Xi3 into Xi.

↓law : let XCIR" be a compact domain w/ smooth boundary. Then,

((x) = 2 Vay) + o(u)
define the error en (x)= Ch(X)-2FrT subleading term

H+0esture hing:A stushapgelimRYthink of
Ru(X) as an intrensically symplectic measure of corrature of 2X.



Ihm(Edtmair): Ch(X= 2 Wro) + o (1) or
,
en() is bounded.

For example, take X =B:pisit K

vol(B() = Area # = Yzx i
(k(B() ~ 2FATR) = X Fr

limsup

- 0
. 5

lim inf

- 105

Iwrite 2k = 2n (B()) limsup Ck =-1/2
-

k + x

en (B(x)) = Xe'i liminfen = -3/
= (n(B()) = 0(1)

I

(n(B(x))= Xan + xei =X(vn +e) k+x

Note -ERr(B(N) = -X .
B11) is very nongeneric, so we don't expect enIRY- RU

using Pasking stability
,
we can extend the OCD) band from B"(1) to

any bounded
,
star shaped XCIRTw/ smooth boundary.

Ihm: letB be a ball & XCB star shaped . Suppose both X & BIX have

↳packing stability. Then
, en (x)= 0(1) .

#using oliver's packing stability result, if 2X smooth
,

then en(x) = 0(l)

/Proof : For expositional simplicity, suppose we can choose B st vol(B)=2vol(x)

Then vol(B(x) = vol(X) chooseI the larger packing stability threshold
of X or BIX

Then
,
there are full fillings [BGF insideis outside.

since vol (x) = vol(BI) by assumption
,

we can use the same X for the

we will use this sandwhiching of X between &BSD to sharply control (n(x)



Lower Bound Upper bound

OO 00
00(4X 000I
O Go

# pts
&

-b
(( B()) = ((X)

-S CH([(B() +x) = (2n (B)

*

#R() -m(() + G(x) =C

all together, Cn([B()) = (x(x) = (2)(B) - Cn([(B(x)
Remark : we expect the inequality* to be nearly sharp, i . e the optimial
i
, j for the maximum is i =j= G. Asymptotically ,

its best to diry up the

21 points in Cen according to the volumes of the connected components.

so
, this is close to the best bound we can get on Ch(X).I

Eki=
Distribute points evenly amongst

NextWe COMPUTCBMax!
/schematic) the Balls. we expect this to

give the best bound.

And
my e =+ + ne

B) + Xen O(i) term.

weyl law

upper Bound : use packing stability ! If n=9
, I full filling

* B() 2) B(a) where vd B() = vol([B()

L *k = n
=2 = 2 = xm

& (Y(B() [ ((B(m)) = Xm(2n + en)

+ xmenI All together : X+Me + 0(1)



↑
note that we have control over the error terms in terms of n.

Using lim inf ek =
-3/2 limsup ep=I we get liminf en([B() ? -Ein limsop en(FB() = -Exon

II
&

-

Putting everything together :

BN) = (r(x) = (B) - C/B(N)

&(ii) + Men [G)B)+ en(i))-F i()++e)
using vol( B() = vol(x)= vd(B)/2

,

2rd( + Men -

> ((x) = (I +(B) - (2 +e)
2n(x) = Ch(x) - 2NF) satisfies Xneit =@n(X)E(B)-Wher

LH(X)= 0(1)
While we're here

,
let's figure out bonds on en(X). we need to express above

in terms of n & vol(X)
n*/ = (d) [B(A) = vol(x) => x=
if B= B(c)

, then G = vol(B(a)) = vol(x) = x = Evo()
.

so
, (B)=We

Ent() ener ()-Ed ein-F) ei



limit ei = -3/2 limint en(x) <on.yTusing & get #-8

limsupef = -12 lim Sup
k+x

(n(x) - + zd()

-

Remarks :
- The Oli bound obtained from the proof depends onthe packing
stability threshold N .

smaller threshold-> better bound on error

2
- if en(x) + Ru(X)

,
then the N2RU(X)

larger Ruelle invariant= > larger stability threshold

~ Counter examples to packing Stability-

We saw X has Packing stability = en(x) = 0 (1)
contrapositivly

, Em len() =0 => X does not have packing stability.
concave

↑m (Dan C
.G, Hind23) : The toric domain

Xe =+(e) does not have packing stability

Intritivly
,
this domain is like a symplecticdena

Zero as you go to infinity. By Gromor non-squeezing , a fixed width

ball can only get so deep into the tibe before getting stock. No matter how

small the balls
, you can't fill the end of the tube

,
so you don't expect packing stability

Xe is unbonded
,

so is hard to work with
. Though ,

Ball gets stuck

Xe is symplectomorphic to a bounded domain. *
"Sphaghetti morphism" I

D into unit dis by "swirling" around#D something similar to Xe 2/a

symplesto morphism



&AnSmoothermophem 22
not smooth no free lunch "

bounded

X has en(2) -> 0 by solving combinatorial problem from the toric domain

in fast
, ifRdecays like X InRw-HMD

,
because 22 has minkrusk: dimension 23 !

--

dem vola d = codim. 2
measure dimension of a set by the volume of points within ⑭
distanced of the set. d

#//// volad => codim. I

let VaA2 be the volume of I within distance

d of 22 /11 volad'= codim. O

Iet : The inner minkowski dimension of 22
-

dim(22) = 4-liminfla
Remarks : -- if Vy() = d+ o(d)

, dimmin (2) = 4-2
.
the minkowski

dimension measures decay rate of volume near the boundary.

- If MCZ is smooth of codimension &, then Valulud" .

- this is independent of metric on IR
Pe(1,2)

-> forXexo ,

dimmin (tXre)
= 2 + * e (3, 4)-

Dimension > 3 bdry !

The minkowski dimension of 22 limits the growth rate of en :
d -zde(3, 4)

↑hm (Fractal Weyl law) : if dimmin (22) = d
,
then 19(2)) F

-

or... if you ever see a domain Iw/en1)rkd for 27, then

2) & most have minkowski dimension > 3
. Detecting fractals w/ ECH .

efficiently pack inside w/ polydisss, by"Profuraputwanmo
boundary

,
this gets us to lerkl*

If the volume decays slowly /extra large minkowski dimension) , then we

need to keep many more polydises. This makes our ball packing
less efficient

,
& gives us a worse band on eK.



Edtmair constructed a domain XCIRYw/OXEC"C for all de1
,
w/

en(X) -> 0
. Hence X does not have packing stability , showing that you

need at least a bondary for gravented packing stability.

Properties of this example:

-X is smooth outside of I point

- X is constructed from a sequence of Codomains Xn. The curvature of 2xn -> -

only at the point of non-smoothness

The packing stability threshold of Xn ->* as n +> 2
-

- Ru(Xn) -> 0
,

in accordance with micheals conjecture

XI Xz single point

Xn : 2-E
regularity⑪

curvature -> Y at non regular point
Threshold for packing stability increases

Ruelle invariant increases

Moral of the Story :
· Packing stability -> uniform error band on ECH Weyl kam

· Pasking Stability/ECH error areBondary Phemonena

· As boundary curvature is larger, stability/ECH error eats worse

↳ packing stability requires smaller balls
↳ ECH error term gets larger



Part 2 : Proving Packing Stability
Recall Oliver's packing stability theorem

Im: every symplectic 4-manifold (M
,
w) with smooth boundary has packing stability

to prove this, we need to decompose (M,a) into simple pieces with packing stability.

The key idea : Decompose (M,w) using
the algebraic structure of the Hamiltonian

diffemorphism group Ham (M)
I

Loy model : letHo be a family of hamiltonians

on S
, HAR

fixw an we form on s? Let = Phwith symplectic form - = dsedt + a

D(H
+,
c) = &(,+, p) +M) C = S= H+103C M

Region below Graph of H+
,

above (

Thm: forCuffently negative D can belya
-

2E[0, 1]
Example : choose polar coordinates (2

,
6) m5, I-

Ef S

define H
+(2, E) =12 the standard height fruction

we can describe the packing of DE2 ,
C) explicitlyI first

,
use polar coordinates to project S2- END

, SP3+x(0), oth
Next

,
cot along. E

=0 to obtain a rectangle (01)x(0,25) Z*↑

In these coordinates
, DEZ

, C) looks like G
lagrangian 0 O In

= ! product ellipsoid

I=***
L W

·

" #x+ = P"(1) polydic
S =- -

its ⑦
1

Thatis, D/2,
c) is fully filled by B

* 1) WB()WP"

(4).



Remark : Both balls and polydisss have packing stability
.
It's not so

-

simple to show that something fully filled by balls/Polydisss has packing stability

-
nc9 (packing stability)

e .g BPCD is only fully filled by [BY(X) when
- vol(BY(D)= vol/BY(D)/n

if disjoint sopies of BY(x) fully fill BY(DWPY(s), then vol(BY() = vol(B()=(1)
# n

This is only possible ifis rational "a little too much to hopefrhe

Oliver circumvents this by using the decomposition into balls & polydiss to

fully fill (M,
w) w/ a single ellipsoid, then packing the ellipsoid.
-

When are two domains DCHT
,

c) & D(H+
,
c) symplectomorphic ?

If there is a family of symplestomorphisms 4 : MB st S4DEDH,C) then :

1
. vol D(HI, c) = volDH = S (H+

-c) wedt
5 x[0,1]

2. The Chareteristic foliations of D(Hi
,

) & DCH'
+, 1) agree·

Recall for XCMM
,
2)

,
the charesteristic foliation & on GX is the foliation integrating the

distribution her cultax Charesteristic foliation

e .g, if 2X is contact type, t is foliation by Reeb orbits. of 2X ⑰
we can explicitly describe the charectistic foliation of D(H

+, C) : X

on Graph (Hz), Y = ( H + 2, +2+
+ X

++)

characteristic foliation
+

flow & 2 D(H+, C) has 4 parts :

- 2+ D= Graph H
· 2

. D= C

-2D = s
*xY3XIR1D· on 8, D, E = [s]

- 2 ,
D = 5x (3x151D

on 2.D
, Y = (2+>

trivial

First return map of E is flow Yet of XH
+



so we should think of[D(H+ C) as the mapping torrs of Yi
1)(HI

,
C) symplectromorphis to DCH

,

C) => Y & Y'l have same mapping tores

=>YY Cyp to conirgation

Im: let D"= DCH* D .
if Hi satisfies :

= path of symplectomorphisms
A

I
rol (D) independant of X => 4"D-> D

+

⑱fal"#inindependant
a

top 1 : use condition B to build a map ↑" : 2D o - JDS

which preserves wlyp. This extends to a symplestomorphism of ubbds ofI
-

-

2D ,
& similarly to the complement MIDO-> MIDY

Step 2 : use moser argument to extend 4" into the interior of D .
This

UsesI condition A to ensure [4
**-]EHz(DYCD") is constant.

for our example H
+
(2,e)= 12

,
time I flow is rotation by in around the poles

for any H+
w/ time I flow consgate to rotation by t, SH+= Siz = *,

1) (H+, C) symplestomorphic to DC 2, C)
,

so DCH+, C) decomposes as balls & polydises (I has packing
stability)

key Insight : an arbitrary ↑C Ham(w) can be decomposed into terms X01X+
Im (anyaga) Ham(s

,
2) is a simple group. I . e

,
it has no normal

proper subgroups

-correlarryfor
a fixedHumaconsider thesubgeirgation invariants

hence normal
. Since Ham (5,w) is simple, Ham/sa) = N (40)

That is
, every PeHam(s ? al can be written as

↑= (20400Xn10 ... 0(X , 0400X1)

In particular, take 40 = Ye



Let's apply this to D(H +, c) . decompose &H = (nothoxulo ... 0(X , 04 X)
Then

,
choose a careful Hamiltonian Fi+ w/ same time I map, which runs through each

term of the decomposition one step at a time :

RoY*s

->

D(H+, C) xitix.

Of= Ch+ / I
Simpleto

⑦O
Now decompose into segments :

X.4R2
X

, 042,24, Of
->

full filling

-(1)next send (St) (S,
n+)

4 ,
042, xi
00

D(H+ c) (S. I 1W ... decomposes into balls & polydiss
-O

+f(x)) IS I so D (H+, 2) decomposes too,

for sufficently negative C .

or(z)q- W...
The constructed hamiltonian

400 G
+
osscilates of order n. #

+f [01]
of terms in the Hamiltonian decomposition.

D(Hn
,
c)D(E The largerI, the smaller the↓needed C.

This proves subgraphs of Hamiltonians on
S" can be decomposed a



To Decompose an arbitrary (MYw) into balls & polydiss, need to

first split (M, a) into subgraphs of hamiltonians. we san't always use spheres.

Instead
, we uso subgraphs over annoli.

The Hamiltonian which generates resid rotation has subgraph /A
Ingredients for proving packing stability :

·

Symplectic Frostom"

- Analogue of Banyaga's simplicity result for Ham() Olivers other

- Control over # of terms in Hamiltonian decomposition, using Conorm.
S paper

- Generalize above argument from spheres to annoli
,
to split a symplestic frostom

into balls & polydiss

Method of decomposing (MW) into subgraphs of annoli, Co-close to

the standard rotation (split into symplectic frostom)

- Method for gloing together filling by balls & polydiscs into full filling by

single, very long, " skinny ellipsoid.


