Matrix factorizations and Topology

$$X \xrightarrow{x_{s}} \xrightarrow{x_{o}} \xrightarrow{x_{o}} = \begin{bmatrix} et & W: X \Rightarrow D & be a holomorphiz
function, with a unique critical
value D.
 $V = \bigcup_{i=1}^{n} \bigcup_{i=1}^$$$

Definition MF(x,w) is a category with objects matrix factorizations & morphisms Zz-graded maps Hom (P,Q) Hum⁶: $\varphi_0 \downarrow \frac{e}{e_i} P_i$ degree 0 $Q_0 \rightleftharpoons \frac{q_i}{q_i} Q_i$ Hom¹: $\varphi_0 \rightleftharpoons P_i \rightleftharpoons P_i$ degree 1 $Q_0 \circlearrowright Q_i$ Q_i degree 1 $Q_0 \circlearrowright Q_i$ the complex carries a differential $\partial \phi = \phi P + (-1)^{|\phi|} q \phi$ define the homotopy category [MF(X,W)] with objects matrix factorizations and morphisms Mor (P,G) = H (Hom (P,G), 2) ¢~¢ if explicitly: $\begin{array}{ccc} explicitly: & P_{0} & P_{1} & \Psi^{*}\Psi^{*} & \Psi^{*} \\ M_{or} & (P, G) & P_{0} & P_{0} & P_{1} & P_{0} &$ _ = _ + "Cycles in Hom⁰(P,G)" $Q_{G} \stackrel{\sim}{=} Q_{0} \qquad Q_{1} - \varphi_{1}' = Q Q_{1} + Q_{0} P$ 🗋 = 🛐 + 🏹 "modulo boundary" i.e Chain homotopies of degree-p Questions: - Why does MF(X,W) see only the critical locus? - How do we extract topology H*(X,Xs) from MF(X,W)? Part 1: Boring Matrix factorization categories at the outset, MF(x,w) seems to have many objects. at least $T(0_x)$ worth. but, by defining marphisms up to homotopy, many objects become isomouphit. This 'cuts down" MF(xw) to a managable size. If W has no critical points, every object in MF(x,w) I isomorphiz to the O object Lemma: an object $Q_0 \rightleftharpoons Q_1$ is isomorphic to the O object $O \rightleftharpoons O$ if the morphisms Id & O are identified in [MF(X,w)] $Pf: (P \in Mor(Q, Q) \quad is \quad un \quad is \quad comorphism \iff f \quad \phi' \in Mor(Q, Q) \quad s. + \quad \phi' \phi = id \in Mor(Q, Q)$ but any $\phi^{\dagger} \in Mar(c, G)$ is the O morphism, so $\phi^{\dagger} \phi = 0$. Hence, $Q \simeq 0 \iff id = 0$ as morphisms from Q to Q, $\begin{array}{cccc}
P_{0} & \stackrel{f}{\leftarrow} & P_{1} & \varphi_{1}f + g \varphi_{0} = id \\
e_{x} p_{1}icitly: id & \varphi_{0} & \varphi_{1}jid \\
g & \varphi_{1} & \varphi_{1} & \varphi_{0} & \varphi_{1} = id \\
g & \varphi_{1} & \varphi_$

Thm: Every object of the following categories are isomorphic to O		
Category	objects	Chain homotopy $id - 0 = 2 \varphi$
MF(x,1)	Potg P,	$\Psi_0 = f, \Psi_1 = 0$
MF(X,W) W≠0	Pot P,	$P_0 = \frac{f}{w}$ $P_1 = 0$
MF(Gz)	$\mathbb{C} \stackrel{t}{\underset{\mathfrak{S}}{\overset{\mathfrak{c}}{\underset{\mathfrak{S}}{\overset{\mathfrak{s}}{\underset{\mathfrak{S}}{\underset{\mathfrak{S}}{\overset{\mathfrak{s}}{\underset{\mathfrak{S}}{\underset{\mathfrak{S}}{\overset{\mathfrak{s}}{\underset{\mathfrak{S}}{\underset{\mathfrak{S}}{\overset{\mathfrak{s}}{\underset{\mathfrak{S}}{\atop\mathfrak{S}}{\underset{\mathfrak{S}}{\atop\mathfrak{S}}{\underset{\mathfrak{S}}{\underset{\mathfrak{S}}{\underset{\mathfrak{S}}{\underset{\mathfrak{S}}{\atop\mathfrak{S}}{\atop\mathfrak{S}}{\atop\mathfrak{S}}{\atop\mathfrak{S}}{\atop\mathfrak{S}}{\atop\mathfrak{S}}{{\atopS}}{{S}}}}}}}}}}$	$fg=2 \Rightarrow WLOG f vanishes to degree)$ $f_0 = f/2, f_1 = g$
$M \in (C', Z_i)$	Po Eg P,	$Z_{i} \cdot id = fg \implies id = \partial_{z_{i}} f \cdot g + f \partial_{z_{i}} g$ $f_{0} = \partial_{z_{i}} f \qquad f_{1} = \partial_{z_{i}} g$
MF(C ⁿ , W) JW≠0 No critical points	Po fg P,	Suppose I find V a hole. vert. field s.t $V(w) = 1$ then $W \cdot id = fg \Rightarrow id = V(f)g + fv(g)$ $P_0 = V(f)$ $P_1 = V(g)$ I couldn't find a way to construct V, but it's probably possible on $C^{n} \cdots$
Moral of the story:		
- defining morphisms up to homotopy lets us "cross our eyes" and see many more objects as isomorphic		
- The MF category is basically trivial w/o critical points		

Part 2: First Interesting MF: W=z_1^2+...+z_n^2, X=Cⁿ ~ a history lesson ~

In 1920s Dirac needed a first-order operator \mathcal{D} such that $\mathcal{D}^2 = \Delta = \partial_{x_1}^2 + \dots + \partial_{x_n}^2$. This is impossible on scalar functions. Dirac's idea was to use matricity. Define a "spinor bundle" $\int_{R}^{x_1R^2} k \mathcal{D} \in TM \oplus End(s)$ sit $\mathcal{D}^2 = \Delta \oplus id s$ $\int_{R}^{R} k \mathcal{D} \in TM \oplus End(s)$ sit $\mathcal{D}^2 = \Delta \oplus id s$ replacing $\partial_{x_1} \mapsto X_1$. \mathcal{D} becames a matrix of linear functions \mathcal{Z} , s.t $\mathcal{Z}^2 = (x_1^2 + \dots + x_n^2)$ ids This was the first matrix factorization. Following Dirac's lead, we use

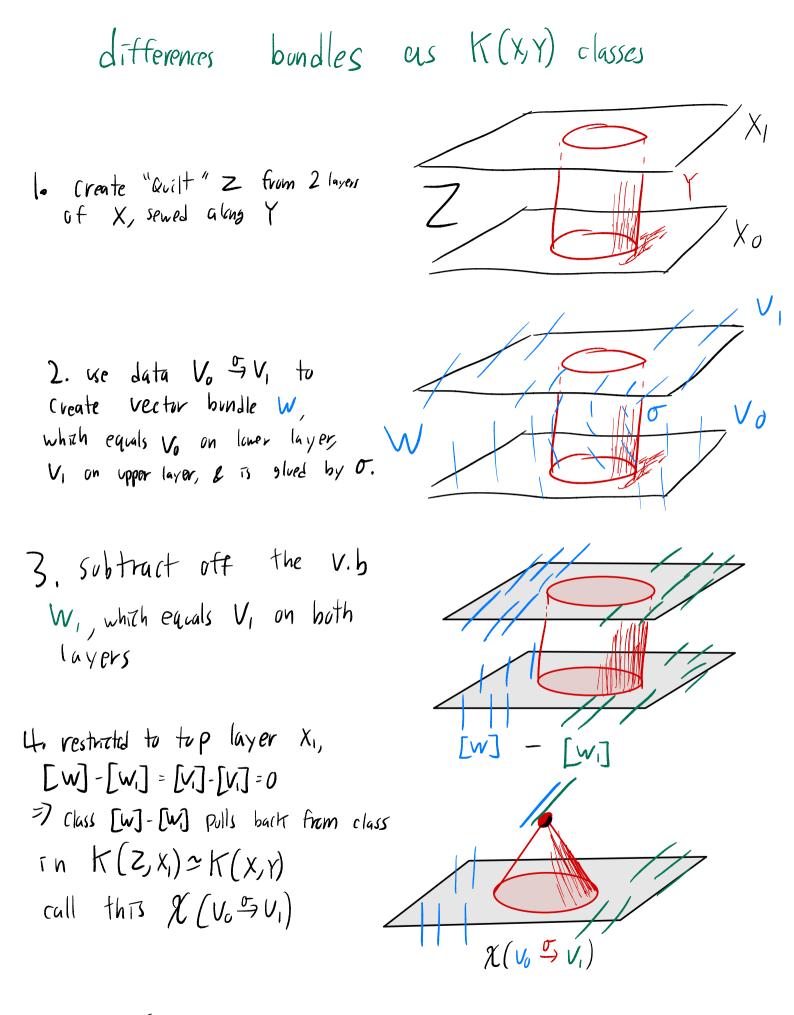
~ Clifford algebras ~

Definition The complex clifford algebra on a vector space V w/ Quadradic form Q, denoted Cl(U,Q) is the tensor algebra ON V w/ relations VOV=Q(U,V)·1 Up to isomorphism, $Cl(V, Q) \simeq Cl_n = \frac{\langle e_1, ..., e_n \rangle}{\langle e_i e_j + e_j e_i = \delta_{ij} \rangle}$ as a vector space, $Cl(v,\omega) \simeq \Lambda^{\bullet}V$ as an algebra, the product is deformed by Q, breating Z-grading to Zz-grading $Cl(V) \simeq \bigoplus \Lambda^{2n} V$ $Cl(V) \simeq \bigoplus \Lambda^{2n+1} V$ \mathbb{Z}_2 -graded algebra Cl(V) is uniquely designed to have many square roots of 1 for any representation $C: Cl(V) \rightarrow End(M)$, C(I) = id. if $V^2=1$ in Cl(V, G), then $C(v)^{2} = id$. These square voots of the identity gives a matrix factorization Thm: every Z2-graded module M' of CR(V,Q) defines an object in MF(V,Q) Pf: identify M', M' with trivial vector bundles $M' \times V = M' \times V$ Define matrix factorization $M' = \underbrace{C(z)}_{(z)} = \underbrace{M'}_{as}$ pointwise clifford multiplication by the base point zeV for $M(z) \in H^{\circ}(M^{\circ})$, $(z) ((z) \cdot m(v)) = (z^{2}) \cdot m(v) = Q(z,z) \cdot m(z) \Rightarrow C(z)^{2} = Q \cdot i d_{M}$ Remark: in condinates, $((z)m = \sum z; ((e_i)m \text{ for a basis } e_i \cdot This is the fourier transform$ of the dirac operator $\mathcal{D}m = \sum C(e_i) \frac{\partial}{\partial z_i}m$

~topology from that MF~

the matrix factorization $M^{\circ} \stackrel{(w)}{\in_{co}} M'$ gives two (trivial) vector bundles on X. But, along $Q^{\dagger}(I)$, the maps C(u) must be an isomorphism: after all, they square to the identity. SQ, along $Q^{\dagger}(I)$, we get a (nontrivial) isomorphism between $M^{\circ} I$ M'. We can extract topology from this. Eventually, a class in $H^{\bullet}(X, w'(I))$

TOPOlogical IT - Theory sec Lawson - Michelson spin geometry, 31.9 $Q'(1) \subset X$ $\frac{1}{1}$ M^{0} - $\int c(v)$ Define H'(x) of a manifold X by the group with elements [V] - [W] topological complex vector bundles and relations $[V \oplus W] = [V] + [W]$ It theory can be extended to a generalized cohomology theory define $H^{-n}(x) = H(\Xi^n x)^{n-fold}$ suspension relative tr-graps $f(x, Y) = \tilde{f}(X/Y)$ where X/Y is a pointed space w/ point [Y], G $Y \subset X$ $f(X, \cdot)) = Ker r: k(x) \rightarrow f(\cdot)$ $f(X, \cdot)) = Ker r: k(x) \rightarrow f(\cdot)$ $\tilde{H}((X, \cdot)) = \operatorname{ker} r : k(X) \to t(\cdot)$ or "IT-theory but I don't rave about the rank of the vector bundle" I can extract or dinary chandlegy from IT-theory using the chern charecter: ch: $K(X) \rightarrow H'(X, z)$ is a ring homomorphism $\mathsf{H}(\mathsf{X},\mathsf{Y}) \to \mathsf{H}^{\bullet}(\mathsf{X},\mathsf{Y},\mathbb{Z})$ Given Vo V, Vo, V, v. bs on X, O: Voly -> V, ly an iso along Y, I can produce a class in H(X,Y)



roughly, $\Re(V_0 - 5v_i) = [V_0] - [V_i]$ on $\Re(x)$, pulled back to $\Re(x, Y)$ using or to force $[V_0] - [V_i] = 0$ along Υ

Lets a pply this construction to
$$M^{0} \xrightarrow{O(2)} M'$$

 $X \xrightarrow{Q^{-1}(1)} \xrightarrow{homotopic} \xrightarrow{Wantshing cycle !}$
 $A \xrightarrow{Wantshing chass} \xrightarrow{Wantshing chass} \xrightarrow{Wantshing chass} \xrightarrow{Wantshing cycle !}$
 $A \xrightarrow{Wantshing chass} \xrightarrow{Wantshing ch$

https://arxiv.org/abs/hep-th/0210296

Complex clifford algebras & modules have a simple structure theory consider the category of clifford modules (LMOD(n) Fact: Cln is semisimple. That is, every module M splits into a direct sum of irriducible representations of Cln. -tor odd n, there are two inreps - for even n there is a unique irrep ring of modules M(Cln) Cl_n n C Z 0 CÐC ZOZ ſ $Mat_2(\mathbf{C})$ \mathbb{Z} 2 $Mat_2(C) \oplus Mat_2(C)$ ZOZ 3 4 Maty (C) 7 Thm (clifford algebra periodicity) $Cl_{n+2} \simeq Mat_2(Cl_n)$ Cor: CLMOD (n+2) ~ CLMOD (n) algebraic manifestation of both periodicity from any object in MF(v,Q), we can build a clifford module. Let's start by computing the endomorphisms of one object: Example: X=C, $W=z^2$, $C \stackrel{Z}{\rightleftharpoons} C$, $fg=z^2$ sheaf So E Sing (wild) in physics language, this Object is a "Do brane graph of W So= Her (==) (centered at the origin" "Periodic resolution" $\mathbb{C} \stackrel{\sim}{=} \mathbb{C} \quad \Psi_{0} \Psi_{1} \in \Gamma(\mathcal{O}_{X})$ $Mor^{0}(C \stackrel{z}{\leftarrow} C)$ $\int \phi_0 = \phi_1 \int \phi_1 = z \phi_1 = \phi_0 = \phi_1$ $\mathbb{C} \stackrel{2}{\underset{c}{\longrightarrow}} \mathbb{C} \quad \text{trivial marphisms: } \mathcal{F} = 2\mathcal{P}_0 + 2\mathcal{P}_1 = 2(\mathcal{P}_0 + \mathcal{P}_1)$ ϕ is trivial if $\phi = 2\varphi$, $\varphi \in \Gamma(\partial_x)$ C[z]/z = C

Mor
$${}^{1}(C \neq C)$$
: for $\varphi_{1} \in F(\varphi_{2}) \quad \varphi_{0} = \varphi_{1}$
If trivial implificants: $\partial \varphi = z(\varphi_{0}-\varphi_{1})$
All tagether: Mor ${}^{\circ}(C \neq C) = \langle y, \varphi \rangle \vee {}^{1}(1 \text{ in degree } U) \quad \varphi^{2} = 1$
 $= C R_{1}$
Now we extend this computation to objects in $MF(C^{2}, z^{2}, \dots + 2z^{2})$
 $S^{n} = (C \neq C) \stackrel{\otimes}{=} C MF(C^{2}, z^{2}, \dots + 2z^{2})$
 $Meter MF(U, Q) \cong Sing(Q^{2}(0)), S (userpoinds to the stryscraper sheaf at 0.$
 $End^{*}(S^{*}) = (End(S)) \stackrel{\otimes}{=} (C I,) \stackrel{\otimes}{=} C R_{n}$
Prop: Every object $Pe[MF(C^{*}, z^{2}, \dots + 2z^{2})]$ defines a module of Cl_{n}^{0}
 $define Z_{2}$ given by acts space $M^{*} = Mo^{*}(S, P)$
 $then Cl_{n} \cong End(S^{*})$ acts on Mor ${}^{\circ}(S, P)$ by composition
 $\stackrel{\otimes}{=} S^{*} \rightarrow P$
 $Mor(S, P)$
 $Thin: these two operations are inverse functors, P define an
 $equivelence of categories (see trapostin-Li)$
 $Cor CLMOD(n) \cong CLMOD(n+1) \iff MF(V, Q) \cong MF(V \otimes C^{2}, Q + x^{2}+y^{2})$
 $Applying a tight -Bott - Shapire, this implies $\tilde{K}(S^{n}) \cong \tilde{K}(S^{n+2})^{t}$ Bott y
 $Varhing: ABS used Ref period we are specified to maximum insteal. Period with
 $V = priod point intervence of the stress of the point intervence of the stress of the stress
 $Varhing: hBs used Ref period we are specified to maximum insteal. Period with
 $V = priod givent point intervence of the stress of the maximum insteal. Period with Y and Y and Y and Y and Y and Y are specified to Y and Y and Y and Y are the specified of Y and Y and Y are the specified of Y and Y and Y are the specified of Y and Y and Y are the specified of Y and Y are the specified Y and Y and Y are the specified Y and Y are$$$$$$

periodicity in MFs holds in more generality than Quadradics...
This (Kronner Periodicity):
$$M F(X, w) \cong MF(X \times C, W + x^{2}y^{2})$$

 $P_{0} \cong P_{1} \longrightarrow P_{0} \equiv P_{0} \otimes (C \stackrel{d}{\Longrightarrow} y^{2})$
how does this manifest topologially? for $P_{0} \stackrel{d}{\Longrightarrow} P_{1} \in MF(X, w)$,
on $W^{1}(D f: P_{0} \Rightarrow P_{1})$ is un isomorphism. applying the contraction leadly
(in a ball B queend can isolated singularity of W),
 $\chi(P_{0} \stackrel{d}{\Rightarrow} P_{1}) \in K(B, W(1)) \cong K(B, X_{2})$ near by fiber $X_{2} \cong F_{w}$
compare this to the episet in MF(XeC, which) related by theorem periodicity
 $\chi(IP_{0} \stackrel{d}{=} P) \cong K(B, W(1)) \cong K(B, IW)$ is $(K, K_{1})^{2} \stackrel{d}{=} (1)) \cong K(B, F_{w, B} \times By^{2})$
Them selection: $F_{w, BX} = F_{w} \stackrel{d}{=} K \stackrel{d}{=} K \stackrel{d}{=} K_{1} \stackrel{d}{=} P_{1}$
so $F_{w, B, R_{1}} \cong S^{2} F_{w}$
 $L S^{2}B^{n} \equiv B^{n+2}$
so $K(B^{n,2}, F_{w, B, X+P}) = K(S^{2}B^{n}, S^{2}F_{w}) \stackrel{d}{=} K(IS^{n}, F_{w})$
 $Bott Periodicity$
 $MF(X, W) \stackrel{ABS}{\longrightarrow} K(B^{n}, F_{w})$
 $MF(X, W) \stackrel{ABS}{\longrightarrow} K(B^{n+2}, F_{w, B, X+P})$
Moral: periodicity of $MF(X, W)$ is categorized bet periodicity