

Gauge Theory for Enots ~ or~ 3 prespectives on linking #s 1867: Kelvin's vortex theory of Knots discuss kielvish's vortex theory, taits conjectures & how it was solved on the jones polynomial

$$R^{2} \quad Winding \quad numbers \quad P$$

$$-W_{p}(x) \quad counts \quad \# \quad of \quad times \quad X \quad winds \quad uraun$$

$$-Want \quad u \quad |-form \quad A_{p} \quad s. + \quad W_{p}(x) = S_{x}A_{p}$$

$$(1) \quad (1) \quad (1)$$

Say verbally: $a: IR^3 \longrightarrow IR^2$ Linting #S - L (X, X') counts # Y winds about Y' winding # is 2D shadew of linking # $\delta/(\gamma') dx$ choose Ay w/ dAy= So \$ d'y Curvature concentrated on Y $\int_{\mathcal{X}} A_{\gamma} = \int_{\mathcal{S}_{\sigma}} \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \text{intersection } \#$

menti

$$L(\chi,\pi'(e)) = w_{p}(\pi(i))$$

$$\frac{E \times amples}{\sum_{i=1}^{n} \lambda_{i}} = \sum_{i=1}^{n} \lambda_{i} \wedge (\lambda_{i}, \Re dx')$$

$$= \sum_{i=1}^{n} \lambda_{i} \wedge dx$$

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \lambda_{i} \wedge (\lambda_{i}, \Re dx')$$

$$= \sum_{i=1}^{n} \lambda_{i} \wedge dx$$

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \lambda_{i} \wedge (\lambda_{i}, \Re dx')$$

inting integral

Pull out vibbon, & show how writhe comes from straightoming out vibbon Self-Linking # (writhe) $L(\chi,\chi) = \int_{\chi} A_{\chi} = \infty \overset{"}{n}$ need to regularize (1) introduce framing: vector field v18' $L(\mathcal{X},\mathcal{X}):=L(\mathcal{X},\mathcal{X}+\mathcal{V})$ self-linking #, or writhe, of & blackboard framing"

Examples (Blackbard framing) 8, 🗸 $L(\mathbf{X},\mathbf{X})$ Az replace dAF Sy to Dod smooth out with $dA_g = B$ s.t. - B supported on tube around \mathcal{X} ($\mathcal{A}_g = \mathcal{X}$) $L(\mathcal{X}, \mathcal{X}) = \mathcal{X}$ SANB = SANDAN IR3 B = SIR3 - dB=0 - for transverse section Σ , $SB = SSR + \hat{y} \cdot Jx$ Say how (2) uses a secret traming Say how this is not topologically natural!

These are gaussian integrals: in finite dimensions,

$$\int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = \underbrace{c}_{\text{trend}} \text{ finite dimensions},$$

$$\int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = \underbrace{c}_{\text{trend}} \text{ formalization} \\ \int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = e^{i\langle x,Ax\rangle} \text{ where} \\ \int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = e^{i\langle x,Ax\rangle} \text{ where} \\ \int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = e^{i\langle x,Ax\rangle} \text{ where} \\ \int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = e^{i\langle x,Ax\rangle} \text{ where} \\ \int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = e^{i\langle x,Ax\rangle} \text{ where} \\ \int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = e^{i\langle x,Ax\rangle} \text{ where} \\ \int_{\mathbb{R}^{n}} e^{i\langle x,Ax\rangle} = e^{i\langle x,Ax\rangle} \text{ for an if est } \mathcal{I} \text{ for an if existing } \mathcal{I} \text{ for an if exist } \mathcal{I}$$

8

 $x^T A = B$, $x_0 = AB^T$

ß

putes K

ormula is: D

neister N

Structure

resolve crossing as $M(\circ \circ) = pt$

intruduce holomorphiz structure, making 5° into CP $Z(\Omega) = \alpha Z(\Omega)$, what very hard to calculate $Z(\emptyset)$. Shortrut! Use monodramy: make things holomorphic: $S^2 \rightarrow Cp'$ solutions are $\lambda \stackrel{Z}{=} \stackrel{(Z-2a)}{=} dZ$ Poles @ 1.00 zeros @ 0, Zo

is d?
Q: how does
$$\lambda$$
 change when Zo goes an
get line bundle on $P' \setminus EG_{VO}$?
Physics \Rightarrow line bundle is flat
& monodromy around O is -1
 $\Rightarrow Z(\bigotimes) = -Z(\bigotimes)$
 $= Z(\bigotimes) = -Z(\bigotimes)$
 $= Z(\bigsqcup) = \# \bigotimes - \# \boxtimes = W$

round $\left(\frac{Z(z-z_0)}{z^{-1}}\right)dz$

rithe(L)!

Jalk Part 2

& the Junes Polynomial

Tell story about history of witten's involvement in the jones polynomial

Topological Quantum field theories

Flat connections: Glie (Connection ∇_A defined by A. monodromy around $\gamma_{TS} \exp(2)$ $\downarrow \rightarrow curvature F_{F} = dA + AAA E \Omega$ Example: G = U(I), $A \in \Omega'(M, IR)$ g = IR $F_A = dA$

Group, I lie algebra, Principle G-bun

$$f \in A_{c} = \Omega'(M, g)$$

space of connections
 $2\pi i S_{g} A) \in G$
 $\Omega^{2}(M, g)$
R)
R)

ndle

Chern - Simons theory] Cla $S_{CS}(A) = \int tr (AndA + \frac{2}{3}AnAnA)$ $M \land trace of g m adjoint rep. Cr
for loop T, representation R of g, Exan$ $W_{\chi}(A) = tr_{R} \int_{\partial} A$ monodromy of $\nabla_{A} || A_{\chi}$ Quantum: $Z(M,G,Y,R) = \int_{AG}^{2\pi i} (HS)^{i}$ mention that we we expect it to

assical: Crit points of
$$S_{cs}(A) \Rightarrow F_A = dA +$$

rit points of $S_{cs}(A) + W_r(A) \Rightarrow F_A \approx S_r^{flat or}$
imple: $G = U(D)$, $S_{cs}(A) = S_M A A dA$
Linking #
Critical pt of $S_{cs}(A) + S_r A \Rightarrow F_{A_r} = S_r * d a$
 $S_{cs}(A) + W_r(A)$
 $F_A = DA$ | what is invariant for G n
consider this integral because
to localize around classical solutions

+ AnA=0 vortex away from y lines $= L(\overline{x}, \overline{x})$ $\left(\begin{array}{c} A \end{array} \right)$

 $L(\mathbf{x},\mathbf{x})$ nonabeligh?

for computations: Z

Chern-Simons Vector Space
$$\sum$$
 \sum R R
 R Flat connection on Σ M monodromy around mark
moduli space $M(\Sigma, \Sigma, \Sigma, R; 3)$
nplex mfld W Line bundle L. $[Z(\Sigma_{2})=H^{0}(M)]$
flat v.b over muduli space of Riemann surfaces T

Prints Ked

Stein Relations want d, B, O s.t & Z (\mathcal{C}) 7

it there

Chern-simons on 4-hold sphere: Geometric input: Z $\begin{pmatrix} standard \\ rep. \neg R \\ Pval \\ rep. \neg R \\ Pval \\ rep. \neg R \\ R \end{pmatrix}$ SU(2) = C² 2 Dimensional > a, B, & must exist! issue? vector $Z(\mathcal{D}) \in Z(\mathcal{D})$ very hard to find trick: Use monodroiny! $2\overrightarrow{(2)} \rightarrow 2\overrightarrow{(2)} \rightarrow 2\overrightarrow{(2)}$

2= s²-4 pts > P'- {0,1,0,2} moduli spare of complex structures = 19- {u, 1, 23 Z(Z) flat, rank 2 v.b over ZZ Monodromy of $Z(\Sigma_{\bullet})$ $Z(\Sigma_{\bullet})$ $Z(\mathbb{I}_{\bullet})$

Physics input gives
$$d, B, \mathcal{X}$$
:
Writing $q = e^{\frac{2\pi i}{2+\pi}}$
 $q = 2(\mathcal{X}) + q' Z(\mathcal{X}) + (q' - q'') Z(\mathcal{X})$

Ones polynomial for braids, Z gives trave formula! $5^2 \times 5^1$ 52x[0,1] $Z(s^{2}x^{2}s, v) = Tr(Z(:) \xrightarrow{\text{Braid group!}} Z(:)$ $Jones \operatorname{Polyncmial} is trace of certian \operatorname{Braid} representations$