
discuss Kelvin's vortex theory, tits conjectures, \&how it was solved wt the jones polynomial
$\mathbb{R}^{2}$ Winding numbers $\gamma_{p \text { curve rt }}^{\gamma}$

- $W_{p}(\gamma)$ counts \# of times $\gamma$ winds grand $p$
- Want a 1 -form $A_{p}$ s.t $W_{p}(\gamma)=\int_{\gamma} A_{\rho}$

(1)

$$
\begin{aligned}
& O=W_{p}(\gamma)-W_{p}\left(\gamma^{\prime}\right)=\int_{\gamma} A_{p}-\int_{\gamma^{\prime}} A_{p} \\
& O=S_{\Sigma} d A_{p} \forall \sum \text { not contaminate } p \\
& \Rightarrow d A_{p}=0 \text { away from } p:
\end{aligned}
$$

$$
\begin{align*}
& 1=W_{p}(\partial s)=\int_{\partial_{3}} A_{\rho}=S_{S} d A_{\rho}  \tag{2}\\
& \text { together with (1).. } \\
& d A_{p}=\delta_{p}
\end{align*}
$$

Solution:


Say verbally: $a: \mathbb{R}^{3}$

$$
L\left(r, \pi^{\prime}(p)\right)=w_{p}(\pi(r))
$$

$\mathbb{R}^{3} \quad$ Linking \#s
$-L\left(\gamma, \gamma^{\prime}\right)$ counts \# $\gamma$ winds abut $\gamma^{\prime}$ winding \# is $2 D$ shade of linking \#

mention gauss linting $=\int_{\gamma^{\prime}} \int_{\gamma} \frac{r_{1}-r_{2}}{\text { in tegral }_{1}-\left.r_{2}\right|^{3}} d r_{1} \times d r_{2}$ Gauss's linting integral
pull out ribbon, \& show how writhe comes from straightening out riband

Self -Linting \# (writhe)
$L(\gamma, \gamma)=\int_{\gamma} A_{\gamma}=\infty$ ne ned to regularize $^{\prime \prime}$ ned
(1) introduce framing: vector field $v \perp \gamma^{\prime}$

examples (Blac kbard framing)
$\gamma, \vee$

$L(\gamma, \gamma)$
2
(2) smooth out $A_{\gamma}$ replace $d A_{\gamma}=\delta \gamma \hat{\gamma} \cdot d x$ with $d A_{\gamma}=B$ s.t

- $B$ supported on tube around $\gamma$
- $d B=0$
- for transverse section $\sum, \int_{\varepsilon} B=\int_{\varepsilon} \delta_{\gamma} \psi \hat{\gamma} \cdot d x$


$$
\begin{gathered}
L(\gamma, \gamma)= \\
\int_{\mathbb{R}^{\beta^{\prime}}} A_{1} B=\int_{\mathbb{R}^{3}} A_{\gamma} \wedge d A_{\gamma}
\end{gathered}
$$

Say how. (2) uss a secret framing

Say how this snot topelgially natural!

$$
\begin{aligned}
& x^{\top} A x=B x \Rightarrow x^{\top} A=B, \quad x_{0}=A^{-} B^{\top} \\
& x_{0}^{\top} A_{2} x_{0}=B^{\top} A^{\top} B
\end{aligned}
$$

these are gawsian integrals: in finite dimensions,

$$
\begin{array}{cl}
\int_{\mathbb{R}^{n}} e^{i\langle x, A x\rangle}=\frac{C}{\sqrt{\operatorname{det} A}} \\
\int_{\mathbb{R}^{n}} e^{i(\langle x, A x\rangle-\langle x, B\rangle)}=\frac{c}{\sqrt{\operatorname{det} A}} e^{i\left\langle x_{0}, A x\right\rangle}, & \text { where } \\
A_{x_{0}}=B
\end{array}
$$

formally applying, we get
anoby $\%$ :
de ram clowns. yaws linting \# path integral peach cellular shame
TU FT

TQFT strutore

introduce holumaphic structure, making $S^{2}$ into $\mathbb{C P}$
$Z((\Delta))=\alpha Z(Q)$. what is $\alpha$ ?
$Q$ : how does $\lambda$ change when $z_{0}$ goes around 0 ? get line bundle on $\mathbb{P}^{\prime} \backslash\{=0,100\}$

$$
C=\left\langle\lambda \frac{z(2-2)}{2 H} d z\right\rangle
$$

very hard to calculate $z(\theta)$.
shortcut!
Physics $\Rightarrow$ line bundle is flat \& monodrama around 0 is -1
Use monodramy:
$5 \rightarrow$
make things holomorphic: $s^{2} \rightarrow C p^{\prime}$


$$
\begin{aligned}
& \Rightarrow Z(Q)=-Z(B) \\
& =z(L)=\# \underset{L^{\text {ours casnags }}}{\star}-\#^{\text {undernasiags }}=\text { writhe }(L) \text { ! }
\end{aligned}
$$

Talk Part 2

Topological Quantum
field theories
\& the jones polynomial

Tell story about history of witten's involvement in the sones polynomial

Flat connections: $G$ Lie Group, g lie algebra, Principle $G$-bundle connection $\nabla_{A}$ defined by $A \in A_{G}=\Omega^{\prime}(m, \underline{g})$ space of connectors monodromy around $\gamma$ is $\exp \left(2 \pi i S_{\gamma} A\right) \in G$ $\leftrightarrows$ curvature $F_{A}=d A+A_{\wedge} A \in \Omega^{2}(M, \underline{g})$
Example: $\begin{array}{ll}G=U(1), & A \in \Omega^{\prime}(M, \mathbb{R}) \\ \underline{g}=\mathbb{R} & F\end{array}$

$$
\underline{q}=\mathbb{R} \quad F_{A}=d A
$$




$$
\begin{aligned}
& \text { Quantum: }
\end{aligned}
$$

mention that we consider this integral because we expect it to localize around classical solutions

Axions of Toplogical Quantion fied theries (TQFT):
 $z(0) \geq \mathbb{L}): Z(0) \rightarrow z(\theta)$ functor from 2 -cobordions to vect. spares for compututions: $z(\pi)=\langle z(\mathbb{\infty}), z(\pi)\rangle$


Chern-Simons Vector Space|


Cassical solutions on $\sum \times \mathbb{R} w /$ link $\gamma, R$ Flat connection on $\sum w /$ monodromy around marked points for $\sum_{\sigma}^{\text {complex stature }}$ Riemann Surface, $M\left(\Sigma_{\sigma,}\right)$ modali'space $M\left(\Sigma, G,\left\{p_{i}, R_{i}\right\}\right)$ for topological invariance, $Z\left(\Sigma_{\sigma}\right)$ is a flat v.b over moduli space of Riemann surfaces ${ }^{\sigma} \zeta_{\Sigma}$

Skein Relations
want $\alpha, \beta, \gamma$ st $\alpha z(\&))+\beta z((\theta))+\gamma z($ (Q) $)=0$

if there are $\alpha, \beta, \gamma$ which make this 0 , get skein relations

Chern-simous on 4 -holed sphere:
 2 Dimensional $\Rightarrow \alpha, \beta, \gamma$ must exist!
issues vector $Z() \in Z(C: 0)$ very hard to find trick: use monodromy!

$$
z((\hat{B})) \rightarrow z(\dot{\square}) \rightarrow z((\because)
$$

$\varepsilon=s^{2}-\{4$ pt 3$\} \mapsto \mathbb{P}^{\prime}-\{0,1, \infty, 2\}$
moduli spare of complex stratores $=\mathbb{P}^{\prime}-\{0,1, \infty\}$
$Z\left(\varepsilon_{0}\right)$ flat, rank 2 v.b over $\tau_{\Sigma}$

$$
\downarrow \underbrace{}_{\infty} \underset{\sim}{\left(\Sigma_{0}\right)} \text { loop in } \tau_{\varepsilon}
$$

action of mapping class gray for $s^{2}-\varepsilon_{0}$, Phat, Braid group $B_{n}$
monodromy of $Z\left(\varepsilon_{0}\right)$
$\Rightarrow$ action of $\beta_{4}$ on



$$
\begin{aligned}
& q z\left(\zeta_{0}\right)+q^{-1} z\left(\chi_{0}\right)+\left(q^{-1 / 2}-q^{1 / 2}\right) z(2 \zeta) \\
& \text { Chern-simons TQFT computes } \\
& \text { Jones polynomial evaluated at roots of unity } \\
& s^{2} \times s^{\prime} \\
& S^{2} \times[0,1]
\end{aligned}
$$

