Classical geometry w/ Symplectic Geometry ~ the carathedary conjecture Carathéodory's conjecture (~1920) $\mathbf{a}^{(1)}$ and $\mathbf{a}^{(2)}$ are $\mathbf{a}^{(1)}$ and $\mathbf{a}^{(2)}$ and $\mathbf{a}^{(3)}$ any convex embedded surface $z \mapsto n^3$ has z^2 umbilic points Symplectic Reformulation (2008) indetinite trader any lagrangun section $\leq c\sqrt{T}\zeta^2, \Omega, \overline{J}, C$) has ≥ 2 complex pts "As of 2024, none of the work has been published" witchPebig Classic Differential Geometry: Gauss map $\sum_{p}^{T_{p}z} \hat{p} \leq \frac{1}{2}$ $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is a subset of the set of the \mathcal{A} $\mathcal{O}(10^{-10} \log n)$, where $\mathcal{O}(10^{-10} \log n)$, where $\mathcal{O}(10^{-10} \log n)$ \mathcal{A} and \mathcal{A} is a set of the set of the set of \mathcal{A} $\mathcal{O}(\mathcal{A})$. The set of the set of the set of the set of $\mathcal{O}(\mathcal{A})$ $T S^{2}$ $\left\{\n \begin{array}{c}\n \left(\hat{n}, \hat{v}\right) & \left|\|\hat{n}\right| = 1, & \left(\hat{n}, \vec{v}\right) = 0\n \end{array}\n\right\}\n \frac{\left\{\n \begin{array}{c}\n \left(\hat{n}, \hat{v}\right) & \left|\|\hat{n}\right| = 1, & \left(\hat{n}, \vec{v}\right) = 0\n \end{array}\n\right\}\n \frac{\left\{\n \begin{array}{c}\n \left(\hat{n}, \vec{v}\right) & \left|\|\hat{n}\right| = 1, & \left(\hat{n}, \vec{v}\right) = 0\n \end{array}\n\right\}\n \$ Second fundamental form: symmetric matrix $\mathbb{I} = D G : T_{p} 2 \to T_{n_{p}} S^{2} 2 T_{p} 2$

 R_{2} R_{2} ω constru Principle Juster line avizatan of $\left(-\frac{\hat{N}(r)}{\hat{N}(p)}\right)$ $\hat{n}(p)$ Det: the principle curatures at p are the eigenvalues 15, 15, of II the principle clinecture are the enverse Vi, Vz
the guussian curature is H, Bz (= constitute of induced metric) $Def: P$ is an umbilize paint if $H_P = H_P$ - Quadradic approximate is $Z = H(x^2+y^2)$ - tansent sphere 3 tansent to higher order Types of umbilits: contre 1 innie examples of umbilical ρ cints: rotationally symmetric ellipseed Round 52 \geq) $q||$
cmbilian Direction of principle 2 unbilics

 $t_{V|X|X|Z}$ $e(| \overline{ \rho S_{V} \rho}$ $umbif75$ Hamburgar index index of prociple Eliatun around umbilize measure ratation # of $f_a|₇f₁u_n$ $umbil7$ index 1/2 $Sttng: \leq r$ convex $\Leftrightarrow \leq$ has pairine gaussion constants every's here Pomcan - Hopt thm=> $\sum_{\text{cminic}} Z(\xi) = 2$ Caratheday con jecture & conver has 22 unbilic points

Symplectic Geometry of Surface in E^3

Space of Oriental line in E^3 :

Space of Oriental line in E^3 :

a line l is defined by:

a line l is defined by:

a line l is defined by:

a difference of $\begin{pmatrix} 1 & a & b \end$ $rac{ymplect7}{1}$ Symplectic Geometry of surfaces in \mathbb{E}^3 $\mathcal{A}^{\mathcal{A}}$ and $\mathcal{A}^{\mathcal{A}}$ are $\mathcal{A}^{\mathcal{A}}$. In the $\mathcal{A}^{\mathcal{A}}$ $\frac{Surtace}{S}$ G $\frac{fum1/2}$ of $\frac{17.6}{2}$ $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$ and $\mathcal{A}^{\mathcal{A}}$ are $\mathcal{A}^{\mathcal{A}}$. The set of $\mathcal{A}^{\mathcal{A}}$ \mathcal{A} and \mathcal{A} is a set of \mathcal{A} . In the set of \mathcal{A} $\mathcal{A}(\mathcal{A})$, and $\mathcal{A}(\mathcal{A})$, and $\mathcal{A}(\mathcal{A})$, and $space$ of Oriented lines in E^3 : \mathbf{r}^{\prime} , and \mathbf{r}^{\prime} , and \mathbf{r}^{\prime} , and \mathbf{r}^{\prime} , and \mathbf{r}^{\prime})riented line in \mathbb{R} .
 ℓ a line ℓ is defined by: $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, where $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$ \mathbf{a} , and \mathbf{a} , and \mathbf{a} , and \mathbf{a} , and \mathbf{a} $\sigma_{\rm{eff}}$, and $\sigma_{\rm{eff}}$, and $\sigma_{\rm{eff}}$, and $\sigma_{\rm{eff}}$ $-$ a direction $a \left(w / ||u||$ =1) a direction \vec{a} (w/ $||u||=1$)
 $-\vec{a}$ displacement \vec{v} : the point on \vec{l} closest

to origin $(\vec{v}, \vec{u})=1$) $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$ - $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the contribution of the \mathcal{A} $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$ $\begin{array}{rcl} & \text{if } & \text{if } & \text{if } \\ & & \text{if } & \text{if } & \text{if } \\ & & \text{if } & \text{if } & \text{if } \\ & & \text{if } & \text{if } & \text{if } \\ & & \text{if } & \text{if } & \text{if } \\ & & & \text{if } & \text{if } & \text{if } \\ & & & & \text{if } & \text{if } & \text{if } \\ & & & & & \text{if } & \text{if } \\ & & & & & & \text{if } & \text{if } \\ & & & & & & \text{if } & \text{if } & \\ & & & & & & \text{if } & \text{if$ $u \epsilon$ S^2 $\mathcal{A}^{\mathcal{A}}$, and the set of the set of the set of the set of \mathcal{A} $L \in T_u S$
moduli space of lines is $T = TS^2$ a congreene" is a 2 parameter family of lines L SC,
 $\hat{i} \leq \rightarrow E^3$ the normal congrame is
 $N: \leq \rightarrow \top$ $N(P)$ is normal line passing thre $\hat{i}(P)$ Dcf: a "congruence" is a 2 parameter family of lines L: \geq for $i \leq -\pi$, the normal conguere is Remark: N is a suped-up garss map. For $2i$ π π ⁵ \rightarrow s ² the Usual projection, from $\alpha^{(N(\rho))} = \tilde{n}(\rho)$ Question: when is a line congineuse a normal congineus? for line congruence $L \leq C$ TI, try to construct inormal surface $i \in S$ = E^3 $(7, e, 1)$ $(2) = N(2)$ &

 f_{α} Path γ : [u] $3 \leq j$ define the "normal lift" a_{s} $\widetilde{\delta}:$ $[a,1] \hookrightarrow E^{3}$ s.t 1.7 J(t) is on line L($r(F)$) $2.$ $\tilde{\gamma}(+)$ is normal to $L(\delta(t))$ $\begin{array}{ccc} \pi & L(s) & \hbox{had a normal} \end{array}$ surface i scy E^{3} , then $\mathcal{J} = i \in \mathcal{J}$ hence, it δ (0)= γ (1) but $\widetilde{\delta}$ (0) \neq $\widetilde{\gamma}$ (1), no normal surface exati Monodromy obstruction to nomal surfaces 2. $\tilde{\mathcal{J}}(+)$ is normal to $L(\tilde{\mathcal{J}}(t))$

2. $\tilde{\mathcal{J}}(+)$ is normal to $L(\tilde{\mathcal{J}}(t))$
 $+ L(\tilde{\mathbf{S}})$ had a normal surface $i \leq 1$

hence, $\tilde{\mathcal{J}} = \mathcal{J}(i)$ but $\tilde{\mathcal{J}}(0) \neq \tilde{\mathcal{J}}(i)$ no normal s
 \therefore $\widetilde{\mathcal{C}}(\mathit{o})$ d istance along line $L(\delta(c))$ The has a tartological principle IR-bundle $\begin{array}{c} \mathbb{R} & \hookrightarrow \end{array}$ "Normal" condition gives a natural connection! Jommal" condition gives a matural connection!
I principle IR-connection $\alpha \in \Omega^1(T)$ st $\int_{L(\mathfrak{d})} d = \|\mathfrak{F}(t) - \mathfrak{F}(0)\|$ J principle IR connect
Goal: write & down: goal: write & down:
cordinates on TT $\overline{\int_0}$ give starting displace $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 &$ directiv line ates
c d
h û Mcq le $\begin{bmatrix} R \cdot \text{constant} & \text{otherwise} \end{bmatrix}$

with $\begin{bmatrix} R \cdot \text{constant} & \text{otherwise} \end{bmatrix}$
 $\begin{bmatrix} \text{in } R \\ \text{in } R \end{bmatrix}$
 $\begin{bmatrix} \text{in } R \\ \text{in } R \end{bmatrix}$
 $\begin{bmatrix} \text{in } R \\ \text{in } R \end{bmatrix}$
 $\begin{bmatrix} \text{in } R \\ \text{in } R \end{bmatrix}$
 $\begin{bmatrix} \text{in } R \\ \text{in } R \end{bmatrix}$
 $\begin{$ T_{ℓ} $T = \frac{2}{5} \int_{a}^{b} 5 \cdot 6 \cdot a^{2} =$ $\Gamma_{\alpha(t)}$ s² \oplus $\Gamma_{\alpha(t)}$ s²

E
$$
(x, \overline{3})
$$

\n
$$
E(x, \overline{3})
$$
\n
$$
E(x, \overline{3})
$$
\n
$$
E(x, \overline{3})
$$
\n
$$
E(x, \overline{3})
$$
\n
$$
E(x, \overline{3}))
$$
\n
$$

$$

المتابعة المتابعة

 $\mathcal{L}_{\mathcal{A}}$

Complex structure on 1: \overline{U}_{ℓ} rotates everything ac^c anomal e let \overline{J} be the standard complex structure on 75^2 $\begin{picture}(150,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ $\frac{1}{(\mathcal{T}_{0},\mathcal{T})}$ It $\int_{R} N(s) = T_{\ell} N(s)$, ℓ 3 "romplex paint" of $N(s)$ fhm: NG complex \Longleftrightarrow P umbilic paint radially symmetric
thisical thisical vectors $Kahler$ Structure: $(f\rightarrow (0,0)) = 26$, $J\rightarrow (0,0)$ 6.7 vondegenerate w/ signature $(+ + -)$

 $int_{nprace} \frac{of}{f}$
 $int_{m} \frac{f(n)}{f(n)}$
 $lim_{n} (0h^{1}9h)$ Proof of the Carathéodory Conjecture Suppose \leq \top lagrangian has only I complex point The model space of J-overs

(The model space of J-overs)

(i) $\frac{1}{3}F = 0 \Leftrightarrow \frac{1}{9}F = 0$ and $F = 0$

(ii) $\frac{1}{3}F = 0 \Leftrightarrow \frac{1}{9}F = 0$ are complex

(ii) $\frac{1}{3}F = 0 \Leftrightarrow \frac{1}{9}F = 0$ are complex

(ii) $\frac{1}{3}F = 0 \Leftright$ i) find modelispace of J-arres \mathcal{A} is a subset of the set of the set of the set of \mathcal{A} , and \mathcal{A} r dary value
f:D \rightarrow \sqrt{r} Boundary value problem: $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$ Thm: $(0h' 96)$ $f:D\rightarrow N$
(i) $\bar{\partial}f = 0 \Leftrightarrow \frac{a\prod p\uparrow i \sigma f}{f(p) \text{ are complex}}$ $f(D)$ is J-holomorphiz, $\mathfrak{f}\left(\mathfrak{p}\right)$ are complex w' boundary lying on the
t<u>otally</u> <u>real</u> part of \leq (ii) $f(gg) \subset \sum$ w' bandary lying on the ⑨ moduli space of solutions M_2 $\boxed{\text{hmin}$ $(0h' \cdot 96)$ on Kahler milld, $\boxed{\text{cum}}$ perturb $\boxed{\text{S}}$ to Lagrangian $\boxed{\text{S}}'$ st $M_{z'}$ is smooth (the set of Lagrangiums z which are regular, $\begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$ called $\begin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$ is baire $\sum_{\text{int}-\text{right}}^{0}$ + z = (needs to be adapted to neutral Kahler setting) Creeks to be adapted to me

d.im M_{\leq} = index $\frac{1}{2}$

after vepuramertizations

d.m M_{\leq} = index $\frac{1}{2}$

d.m M_{\leq} /Add(b) = index $\frac{1}{2}$

D. Censtruct a J-centre

L. Censtruct a J-centre

Le mean co 2 d im $M_{\mathcal{Z}^{'}}$ = index $\bar{\partial}$ = $M(D,2D)+2$ = $3 = -1$ after reparametizations, and any pts p d *im* M \mathcal{C}/\mathcal{A} it (i) = index $\bar{\mathcal{C}}$ - \supseteq \mathcal{M}_{ζ} is empty! $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$ There are no J-holo disc w/ Boundary E
2. construct a J-corre use mean corrative flow : (converses to ^a minimal surface, 5- arres are minimal) Micer convergence properties in indefinite Kahler case than normal. $\frac{Q}{\sqrt{1+e^{Q}}}\n\rightarrow\n\begin{pmatrix}\nQ & A \\
h\sqrt{ar}bd\sqrt{r}PDE & \frac{E}{r}\sqrt{r} \\
\frac{1}{r}\sqrt{r}DfZ & \frac{1}{r}\sqrt{r}\n\end{pmatrix}$ T perc are J -ares Q : A: method : θ method hyperbaiz PDE Elliptic PDE parabolic PDE
W/ Bary Z $(m_{\alpha_1 n}$ curature fund