Asymtotic holomorphic geometry a partia of symplectic flexability Theorem (Donaldson '96): Every closed symplectic manifold (M, W) has g closed symplectic submanifold  $i: V \hookrightarrow M$  (i.e  $i^* \omega$  is symplectic on V) This result is best understood in contrast with  $M = (IR^{2n}, W_{std})$ Prop: there are No closed symplectic submanifolds of (IR2n, Wsta) Proof: Let i: V -> IR2" be a closed manifold of dimension 2m. compute the symplectic Volume:  $\int_{V} t^{*} \omega^{m} = \langle [V], [\omega]^{m} \rangle = 0$  as  $[V] \in H^{2m}(\mathbb{R}^{2n}) = 0$ So, i \* w<sup>m</sup> must equal () at some point of V. Here, i'v is degenerate. Hence, i'v cannot be symplectic This proof shows that symplectic submanifolds are topologically non-trivial objects. Donaldson's construction of symplectic submanifolds was ground breaking because it introduced a new techique for constructing topological structures which behave nicely wrt. the symplectic structure. Moreover, it is "elementary": No use of J-curve theory or seiberg witten theory. Little all good symplectic things, Donaldson borrowed a construction from complex geometry. Theorem: Every Kahler manifold (X, w) w/[w]  $\in H^2(M, \mathbb{Z})$  has a holomorphic submanifold L <u>Proof</u>: consider a holomorphic line bundle  $\frac{L}{Y}$ ,  $k \leq E H^{0}(X, L)$ . then the zero lacus  $\underline{s}'(0)$  is holomorphic. IF I can chease S s.t O is a regular value, then s'(c) is a holomorphic. hold submanifold. Thm (Bertini): a generic section  $S \in H^{0}(X,L)$  has  $\overline{5}'(G)$  smooth, if dim  $H^{0}(X,L) \ge 2$ so, we seek a like bundle with 32 independent hold. sections. Here's a construction: 1. choose  $L \ll Ci(L) = [Gu]$  "prequantum line bundle" exists b.(  $[a] \in H^2(M, \mathbb{Z})$ (M,w) is "integral" Larries a connection with curvature and => L is "positive / ample"

2. Consider Lt for K=>0 . Riemann-Rach thm:  $\chi(L^{tr}) = \Sigma(-1)^{t} H^{t}(\chi, L) = \underbrace{H^{n}}_{lal} \int_{M} \zeta_{l}(L)^{n} + ...$  $= \frac{k^n}{n!} \operatorname{vo}(X) + O(k^{n!})$ for large powers of the line bundle, ever charecteristic is large. todaira vanishing thm: for L painting  $K \gg 0$ ,  $H^{i}(X, L^{t}) = 0$  for i > 0"all rehemology concentrates in degree O  $\Rightarrow H^{0}(X, L') = \frac{H^{0}}{M} v_{0}(X) + O(H^{0}) \text{ for } H \gg 0$ "Large powers of prequantion line bundle have many sections" together, for some H, J se  $H(X, L^{*})$  such that  $s'(\omega)$  is a smooth All holomorphic submanifold.  $\dim s'(0) = 2n - 2$ ,  $[s'(0)] = Pal C_1(L^{+}) = Pal [Kw]$ Thm (Donaldson), more specifically: if (M,W) is integral symplectic manifold, F codimension 2 symplectic submanifold V<sup>2n-2</sup>CM<sup>2n</sup>, s.t [V<sup>2n-2</sup>]=Pd[Irw] for KEZ, K>15. we call V a symplectic divisor / symplectic hyperplane section (orrelary: Every symplectic manifold has a symplectic submanifold if  $[W] \in H^2(M, Q)$ , then  $\exists q s: t [qw] \in H^2(M, Z)$ . by above  $\exists symplectiz submanifold$  $V^{2n-2}$  s.t  $[V^{2n-2}] = [Hqw].$ Ratural symplectiz forms are dense among all symplectiz forms, and the condition that  $i^*\omega$  is symplectiz is open in space of forms  $\omega$ . To find a form in (M,  $\omega$ ), Deform w to w'EHZ(M,Q), & chase U symplectiz wrt w'. then, V is also symplectizent a.

$$\begin{array}{c|c} \hlineleft{Donaldson's construction} \\ \hlineleft{Recall} the heirarchy of subspaces i:  $\mathcal{W}_{c}^{2m} \in (V_{i}^{2m}, J) \\ & det gl \geq (i' \omega)_{i}^{m} \geq 0 \\ & riemannian usedone \leq (i' \omega)_{i}^{m} \geq 0 \\ & riemannian usedone \leq (i' \omega)_{i}^{m} \geq 0 \\ & det gl = (i' \omega)_{i}^{m} \geq 0 \\ & det gl = (i' \omega)_{i}^{m} \geq 0 \\ & J = (i' \omega)_{i}^{m} = (i' \omega)_{i}^{m} = J \\ & J = (i' \omega)_{i}^{m} = (i' \omega)_{i}^{m} = J \\ & J =$$$

Steps: 1. construct local sections  $O_p \in \Gamma(L^n)$  supported near P s.t 120, 15 -2. local transversality: for functions w/ lafl = x on a ball, there is a level set which has 13f < 12f 3. local to global: patch together Op into s= Ew; Op; Such that  $|ds_{k}| \ge \varepsilon$  on  $s_{k}'(o)$  ( $\varepsilon$  uniform in H) Step 1: local model for sections of Lt Consider  $(M,\omega) = (C^n, \text{Edzind}\overline{z_i} = W_0)$  $C^n$  has prequantum line bundle  $L = C \times C^n$ , & holo: sections of L are holo. fas. need to define hermitian metric (,> on L with curvature w in the national trivialization of L, hermitian memor (s, sz) = h s, sz h: C-> IR fact; curvature of chern connection associated to h is -22 log h Choose  $h = e^{-|z|/2} - \partial \bar{\partial} |w_h| = \frac{1}{4} \partial \bar{\partial} |z|^2 = \omega_0$ littewise, h= e-tr/212/2 is prequantion metric on Lt so the holomorphic section S(x) = 1 has  $|S(x)|^2 = h = e^{-H|z|^2/2}$ L s(x)<sup>2</sup> is gaussian bomp. L w standard deviation /TF. Qaussian Section!! Moral: passing from LH) Lt scales up WHATER local sections are scaled down by X H X/VIF Now let (M, W, J) be any symplectize manifold, L' prequantum bundle choose Darboux chart at point p:

g cal: construct sections  $S_{kr} = / |\bar{\partial}S_{kr}|^2 C_{Trr}$  with  $S_{kr} \in transverse to 2000, with <math>\mathcal{E}$  independ of kr. then,  $S_{kr}^{-1}(G)$  is symplectic for  $k \gg 0$ Step 3:  $|cral - to - g|_{0}ba|$ TODO

Open Boot Decompositions Def: an open boot decomposition on a manifold M"is (B"-2, G) s.t Reeb flow - a binding BCM of codimension 2 F - a fibration  $\Theta: M \setminus B \rightarrow S'$ , with fiber  $F=\Theta^{-1}(c)$ ,  $\Im F=B$ R θ a contact form a is carried by (B\_G) if M S - B is a contact submanifold (ine Brittera) - dd is symplectic on F => Reeb flow transverse to F - the orientations on JF&B agree Thm: (Giroux) Every contact structure is carried by an open book. Like always, we turn to the Kahler case Example  $(M^2 = \mathbb{C})$ 



Consider 
$$f(z): \frac{Z-1}{Z+1}$$
  
 $f: ( \rightarrow IP'$   
 $B = \pm 1$  (poles & Zeros)  
 $\Theta = \frac{f(z)}{|f(z)|}: (C-B \rightarrow S')$ 

**Example:** Milnor fibration  
f: 
$$C^{n} \rightarrow ($$
 holowerphaw/ isolated singularity @ 0  
restrict f to  $S^{2n-1}(E) \subset C^{n} \in snull, any contains
restrict f to  $S^{2n-1}(E) \subset C^{n} \in snull, any contains
set  $B = f^{1}(0) \subset S^{2n-1}$ ,  $\theta = \frac{f(2)}{1 + (f(2))}$ ;  $S^{2n-1} = B \rightarrow S^{n}$   
(B,  $\theta$ ) is open book decomp. of  $S^{2n-1}$   
e.g.  $f(2,w) = 2w$   $f^{1}(0) \cap S^{3} = \sum_{2=0}^{2} w=0$   
e.g.  $f(2,w) = 2^{2} + w^{3}$   $f^{1}(0) \cap S^{3} = G$   
Thm: for  $f: C \rightarrow C$  holoworphiz  $w/0$  isolated, the open book decomposital  $(F(0), f_{\theta})$   
On  $S^{2}$  carries the standard contact structure  
 $e + \lambda = \frac{1}{2}(x, dy, y, dx_{1}) + \frac{1}{2}(x_{2} dy_{2} - y_{2} dy_{2})$  he the Linvike form on  $C^{2} = (z, z_{2})$   
 $\lambda |_{S^{3}}$  defines a contact form. Define  $\lambda = e^{-C(ff_{1}^{2})}$   
 $f(z) = f(z)$ ,  $w = f(z)$ ,  $k_{1}$  is evenuance transverse to the pages so  $d\lambda_{c}$  sympletic an page  
Intuition: if  $\lambda = \langle y, \rangle$ ,  $R_{\lambda}$  is evenuance transverse to the pages so  $d\lambda_{c}$  sympletic an page  
 $f(z) = f^{1}(z)$   $f^{2}(z)$   
 $f^{2}(z) = f^{1}(z)$   $f^{2}(z)$   $f^$$$ 

$$\nabla s = \nabla s \Big|_{3}^{1,0} + \nabla s \Big|_{3}^{0,1} + \nabla s(R) \right)$$

$$\partial_{3,7} s + \partial_{5,7} s + \nabla^{1} s$$
Thm: if s a smooth section of  $L w/ [\partial_{3,7} s] < [\partial_{3,7} s] = G[ong B = s^{-1}(0), ]$ 
then B is a contact submanifold. Furthermore,  $\Theta$ :  $S_{151}$ : M-B  $\Rightarrow$  S' defines an open book decomposition. (Girow): (B, G) carries  $3$ 
we will achieve this by constructing sections of  $L^{0,1}$  K  $\Rightarrow 0$   $\nabla^{1/2} s = ds + itras$ 
the following is proved using techniques analogous  $b$  donaldson:
Thm: (Ibort, Martinee-time, Pressas) for K  $\Rightarrow 0$ , there exists sections  $s_{11} \in \Gamma(L^{0,1}) s.t$ 

$$- [\partial_{3,7} s] < \frac{C}{\sqrt{17}} (asymptotic holomorphicity)$$

$$- [d_{3,5} s] < n along  $s^{-1}(0)$  (2ero set cut out transversity)   
Cor: Every Contact manifold (M,  $z$ ) is carried by the OPEN book  $(S_{11}^{-1}(G), \frac{S_{11}}{1S_{11}})$  for  $K \Rightarrow 0$$$

Other applications of asymptotic holomorphic Methods  
Anything you can build with holomorphic sections in tabler geometry,  
you can approx build using asymptotically holomorphic sections on an integral symplectic vinamifold  
fix 
$$(X^*, \omega)$$
 tabler,  $(M^{2n}, \omega)$  symplectic, prequantum line bundles  $\int_{X} \int_{M} W$   
 $W$  constead  $C$  omplements  
 $if(a)$   
Thm (trahlar geometry): for generic se  $H^0(M, L^3)$ ,  $(X - V, \omega)$  is weinstein  
Thm (symplectic), Giroux 18: for the exists a symplectic divisor  $V \subset M = W$   
 $[V] = PD$  from  $J$  ( $(M - V, \omega)$  weinstein  $Mttps://arxiv.org/abs/1803.05929$   
muse precisely, there is a useinstein domain  $(F, d\lambda) = V = V$   
 $i: F \to X - V$  is a symplectaneophilm  
 $-i: int F \to X - V$  is a symplectaneophilm  
 $-i: \partial F \to V$  collapors the fixes of the normal bundle  
 $-morse function  $p$  set  $V(P) < G$   
choose a hermitian metric  $<2$  on  $L = V$  corvecture  $W$   
 $J = d(f, r, w)$  is a law if  $F = 0$   
 $J = d(f, r, w) = d(V, W) = d(V, V, W)$  is  $V = Vp$  liaville  
 $Proof: d_{TP} w = d_{TP} w = d(V, V) = d(V, V) = d(V, V, V)$   
 $= d(dP(TV)) = dd(P = W)$$ 

Moral: norm of section gives a morse function whose gradient is a liouville v.f On a symplectic  $(M, \omega, J)$ , we can feragle an asymptotic holomorphic section with these same properties.

## Lefshetz pencils

Morse theory sees topology through a function f: K->IR When X is holomorphic, we can do "complex morse theory" via  $f: X \rightarrow Cl^{p'}$  holomorphic choose two holomorphic sections  $S_0, S_0 \in H^0(X, L)$ , & take  $f = S_0/S_\infty$ + exists outside of So'(0) ASo'(0) the fibers  $f'(\lambda)$  are solutions to  $S_0/S_0 = \lambda = S_0 - \lambda S_0 = O$ OR: IP' family of hold sections  $S_{\lambda} = S_0 - \lambda S_{\infty}$ , w/ fibers  $f'(\lambda) = S_{\lambda}'(0)$ The family of divisors S, 1(0) are called a Lefshetz Pencil Example:  $X = C P^2$ , L = O(3),  $H^0(P^2, L) = humagenous cubics on C<sup>3</sup>$ Chause about P.Q. Their zero sets P(0), Q(0) intersect at 9 pts  $\{a_1, \dots, a_n\}$ every rubic curve P-1Q=0 passes through Q1,..., Qg P/Q defines  $f: |p^2 - \{q_1, ..., q_q\} \rightarrow |p'|$ every point in  $\mathbb{P}^2$  for  $\mathbb{Q}_3^2$  belongs to  $S_{\lambda}/c$  for exactly 1  $\lambda \in \mathbb{P}^1$  $(\chi(\chi,\gamma)=O \qquad S_{\lambda}^{-1}(0)$ (X,Y)=() ٩, az 43 294 95 08 Qa IP- 9; https://www.desmos.com/calculator/j3pudxktcf

Definition: A topological Letohetz fibration on a symplectic manifold (MW) is:  
- A codimension 4 set 
$$A \subset M$$
  
- A set of points  $\{b_i\} \subset M \land A^{\text{critical}}_{\text{points}}$   
- A map  $f: M \land A \rightarrow S^2$  which is  
 $\Box = a$  submersion outside of  $\{b_i\}$   
 $\Box = f(b_i) \neq f(b_i)$  for  $i \neq s$   
- Local complex coordinates  $(z_1, ..., Z_n)$  near  $a \in A$   
 $\Box = \{z_1 = Z_2 = 0\}$   
 $\Box = f(z_1, z_2, ..., Z_n) = Z_1/Z_2 \in C \mid p^1$   
- local complex coordinates near  $b_i$  where  
 $\Box = f(z_1, ..., Z_n) = f(b_i) + Z_1^2 + ... + Z_n^2$  Marse-type critical point  
Thm (Letshetz): Every trabler ( $X_i \&$ ) has a topological letshetz fibration  
 $Pic \text{ tr } s_0, s_u \in H^0(X_i L^4)$ .  $f(x) = [s_0(X), s_u(X)]$  note  $[f(X)] = PD C_i(L^4)$   
Define  $A = S_0^{-1}(0) \cap S_0^{-1}(0)$ ,  $f:X \land A \rightarrow |P'| = PD C_i(L^4)$   
for  $K \gg 0$ , can choose  $s_0, s_u$  generally enough to ensure  $f$  is hondegenerate.  
Thm (Donaldson 96): Every integral symplectic mfld ( $M, \omega$ ) has a topological  
letshetz fibration with Symplectic fibers,  $k = [f^{-1}(X)] = PD [K \boxtimes X \Rightarrow 0]$   
choose two asymptotically holomorphic sections  $S_0, s_0$  of  $L^K$ ,  $k = mimic
the above construction, we need enough freedom that  $s_i^{-1}(0)$  is cet out  
suffeximity transversity to be a symplectic shows of  $d^K$ ,  $k = mimic
for every  $\lambda - a$  very sourced up sards them.$$ 

What if we used 3 sections, instead of 2? Thm (Auroux 00): every symplectic 4 manifold is topologically a branched Cover of  $\mathbb{CP}^2$ , branched over a symplectic divisor. the map  $f:(M,\omega) \mapsto \mathbb{CP}^2$  is furnished by chaosing three sections  $s_0, s_1, s_2, \mathcal{P}$ defining  $f(x) = [s_0(x): s_1(x): s_2(x)]$  https://link.springer.com/article/10.1007/s002220050019

Projective embeddings

Mimic the construction for lefshetz pencils with many sections of Lt. Kahler setting: Choose basis  $S_1, ..., S_d$  of  $H^0(X, L^{t})$ ,  $d = \dim H^0(X, L^{t})$ 1p" Define  $\Psi: X \longrightarrow IP(H^{\circ}(X, L^{\tau})) \Psi$  is holomorphiz Thm (Kodaira embedding): for K>O, X (> IP(H°(X,L'))) is an embedding Thm (Barthwich, Uribe '98): https://arxiv.org/abs/math/9812041 There is an embedding in M G (IP, WFS) for K 20 s.t i \* WFS is sympletz. that is, every M is a symplectic submanifold of projective space. Moreover, for K=20, and a compatible triple (w,g,J) on M, i can be made asymptotically Kahler: symplectic isometric holomorphiz  $|\dot{i}_{H}^{*}\omega_{FS}-\omega| = O(\frac{1}{H})$   $|\dot{i}_{H}^{*}g_{FS}-g| = O(\frac{1}{H})$   $\|\partial i_{H}\| = O(h), \|\bar{\partial} i_{H}\| = O(1)$ An elliptic approach to asymptotic holomorphicity unlitive the other results, Brothwich & unibe do not use an extention of donaldsons techniques. Instead, they construct asymptotically holomorphic sections as solutions of an elliptic PDE, the spin-( dirac equation Kahler case: consider the dolbeaut complex on X valued in  $L^{t}$   $\Omega^{0,0}L^{4}$   $\overline{\mathcal{I}}$   $\cdots \longrightarrow \Omega^{0,0} \mathcal{L}^{t}$  roll up  $\mathcal{I} \Omega^{0,2i} \mathcal{O} L^{t}$   $\mathcal{I} \Omega^{0,2i+1} \mathcal{O} L^{t}$ Solutions to  $(\overline{\mathfrak{I}}+\overline{\mathfrak{I}}^{\dagger})\mathcal{A}=0$  are harmoniz forms,  $\mathcal{E}^{t}$   $\overline{\mathfrak{I}}+\overline{\mathfrak{I}}^{t}$   $\overline{\mathfrak{I}}+\overline{\mathfrak{I}}^{t}$   $\mathcal{E}^{-}$ so  $\operatorname{Ker}(\bar{\mathfrak{z}}+\bar{\mathfrak{z}}^*)|_{s^+} = \bigoplus_{i} \operatorname{H}^{0,2i}(X,L)$   $\operatorname{coker}(\bar{\mathfrak{z}}+\bar{\mathfrak{z}}^*) = \operatorname{Ker}(\bar{\mathfrak{z}}+\bar{\mathfrak{z}}^*)|_{s^-} = \bigoplus_{i} \operatorname{H}^{0,2i+i}(X,L)$ =) index  $(\bar{\partial} + \bar{\partial}^*) = \leq (-1)' \dim H^{0,1}(X,L) = \chi(L^{n})$ tor  $H \gg 0$ ,  $Her(\bar{2}+\bar{2}^*)$  concentrates in degree O.

Almost complex roue  $(M, \omega, J)$  J compatible almost complex structure Define spin<sup>C</sup> dirac operator D twisted by line bundle L<sup>K</sup>.  $\underbrace{\bigoplus_{\xi^{\pm}} \Lambda^{0,2n} T^* M \bigoplus_{\xi^{\pm}} M \bigoplus_{\xi^{\pm}} \underbrace{\bigoplus_{\xi^{\pm}} \Lambda^{0,2n+1} T^* M \bigoplus_{\xi^{\pm}} \xi^{\pm} \text{ is canonical spin}^{\mathbb{C}} \text{ spinor bundle}}_{\xi^{\pm}} \underbrace{\bigoplus_{\xi^{\pm}} M \bigoplus_{\xi^{\pm}} M \bigoplus_{\xi^{\pm}} \xi^{\pm} \text{ is canonical spin}^{\mathbb{C}} \text{ spinor bundle}}_{\xi^{\pm}}$  $\emptyset = \emptyset^+ + \emptyset^-$  is the associated dirac operator.  $\mathscr{B}$  agrees  $w/\overline{\partial}_{+}^{+}\overline{\partial}_{-}^{*}$  up to lower order terms, so index  $(\mathscr{B})$ =index  $(\overline{\partial}+\overline{\partial}^{*})$ Thm (Brothwich - Uribe): inder Ø = dim Her Øt for H >>0 https://arxiv.org/abs/dg-ga/9608006 Almost complex structures and geometric quantization if J is integrable, then for large 15, H°(M, L")= Ker D+ as J deforms to an almost complex structure, though we lose any holomorphic sections of L<sup>k</sup>, the # of solutions to DY=0 remains constant "harmonic spinors" <u>Conjecture</u>: if  $\mathcal{B}_{4=0}$ , the degree 0 component  $\mathcal{Y}_{0}$  of  $\mathcal{Y}_{\varepsilon} \Gamma(\mathcal{A}_{1}^{0,2^{n}} T^{*} \mathcal{M} \mathcal{O}_{1}^{C})$  is asymptotically holomorphic i.e  $\left| \widehat{\partial}_{T} \Psi_{0}(x) \right| \leq \frac{C}{2TF} \|\Psi\|_{L^{2}}$ (remark: I think (?) I can extract the from the asymptotic isometry into prejective space) CONJECTURE: YOU FAN CHOOSE YE KER D'+ S.+ Yo has Quantative transversity  $\left[ \partial \Psi_{0} \right] \Psi_{1}^{\dagger}(c) = O(1)$  while  $\left[ \partial \Psi_{0} \right] \Psi_{0}^{\dagger}(c) = O\left( \frac{1}{4\pi} \right) \right)$ 

This is part of an old dream: a proof of the donaldson submanifold theorem through microlocal analysis. The proisit of this led to elaboration of the theory of Spin<sup>C</sup> Quantization:

- Development of Almost Kahler Qvantization, Brothwick and Uribe https://arxiv.org/abs/dg-ga/9608006

- Investigation into asymptotic expansions of the bergman Kernel for the spin C - Diva ( aperator: Brothwick - Uribe 98 https://arxiv.org/abs/math/9812041 Ma, Marinesa (1): Bergman Kernel's on symplectic Manifolds -Shiftman & Zeldich have a different operator whose Kernel gives asymptotic holomorphic sections. They actually achieved a microlocal proof of Donaldson's submanifold theorem. But, their operator is noncanonical & have to write down.

ASYMPTOTICS OF ALMOST HOLOMORPHIC SECTIONS OF AMPLE LINE BUNDLES ON SYMPLECTIC MANIFOLDS

https://arxiv.org/abs/math/0212180