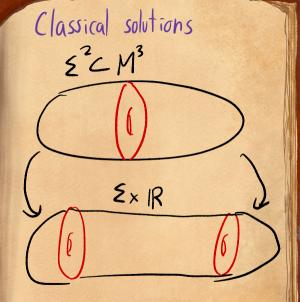
Abelian Chern-Simons Theory Geometric Quantization

abelign CS theory toes the line between interesting & trivial M 3 mfld g = Lie G connection 1 form Af $\Omega'(M, g)$ $S_{G}(A) = S_{M^{3}} + r(A \wedge dA + \frac{2}{3} A \wedge A \wedge A)$ Abelian CS -> G cmpt abelian. take G=U(0: Lie (U(i))= IR, so AE (M,IR) Su()(A) = Sm3 AndA Quadradic in A! Z(M3)= S_2'(M,IR)/G yorpot tensional yorpot te Abelian Chern simons is Free field theory



Classical Solutions Critical points of $S_{U(i)}(A)$ \Rightarrow curvature $F_A = dA = 0$ \leftarrow in A Classical states attached to \leq = solutions to FA=0 on $\leq \times IR/G$ = {AE_2(E,R) | FA=03/G

Space of classical states = moduli space of flat U(1) connections on trivial U(1) bundle over Z := Bun_{U(1)} (E) Space of Quantum states

= Quantization of $Bun_{u(i)}(z)$

Geometric Quantization

Geometric Quantization Symplectic (M, ω) fec {f, f. } Hilbert Space operator $[O_{f_1}, O_{f_2}]$ Dream: canonical map (M, w) ~> H Geometric Quantization: $L \rightarrow M$ line bundle $R_{2} = \Gamma(M, L)$ Beautiful idea, only half works

Shopping List

Shopping list for manifold M?" we need · a Symplectic form w • a Line bundle (L, ∇) w/ curvature W \Rightarrow cohomology $[\omega] = [C_1(L)] \in H^2(M, \mathbb{Z})$ · A "polarization": cuts down (MCL) from 2n variables to n variables → Kahler polarization: Holomorphic structures on M & L $\mathcal{H} = H^{\circ}(M, L)$

Bun up E as a manifold

 $Bun_{V(D}(\Sigma)$ as a manifold Bunner (E) symplectic structure flat connections up to gauge transforms determined by monodromy $\operatorname{Bun}_{\mathcal{U}(1)}(z) \simeq \operatorname{Hom}(\pi_{\mathcal{U}}(z), \mathcal{U}(\mathcal{U}))$ \simeq Hom (H, (ε, z), ((1)) abelianize! \simeq H'(ϵ , U(1)) H₁(ϵ , Z) torson free $\simeq H'(\xi, \mathbb{R})/H'(\xi, \mathbb{Z}) := \sqrt{\Lambda}$ $\simeq 1R^{2g}/\mathbb{Z}^{2g} \simeq U(0)^{2g} \stackrel{\mathcal{Z}}{\simeq} genus g$ Bunu(1) (E) is a torus!

Geometric Quantization Shopping list · (M, w) symplectic - (L, J) w/ curvature w - holo structure on MAL => H= H°(M,L)

Bun (E)

Buny (2) symplectic structure natural symplectic form on $H'(\xi, IR)$ for classes [a], [b] $\in H'(\xi, IR)$, define $\omega([a][b]) = [a] \cup [b] = S_{ab}$ Translation - invariant form on V induces symplectic form a on V/A $(\mathcal{W} \in H^2(\mathcal{V}_{\Lambda}, \mathbb{Z}) \Leftrightarrow \forall \lambda_i, \lambda_2 \in \Lambda, \quad (\mathcal{W}(\lambda_i, \lambda_2) \in \mathbb{Z})$ Bunur (2) Geometric Quantization Shopping list (M.w) symplectic - (L, V) w/ curvature w - holo structure on MLL => H=H°(M,L)

Line bundle 2 > Bunva

line bundle 2 -> Bunun Plan: 1. Construct $\mathcal{L} \rightarrow (V, \omega)$ 2. pass to d - V/n = Bunun step 1: inspiration from quantizing V chouse coords qipi s.+ w = Edqindpi $\{q_{i}, P_{i}\} = \delta_{ii}, \quad \{q_{i}, q_{i}\} = \{P_{i}, P_{i}\} = 0$ hersenburg Lie algebra heis (v) To Quantize, construct heisenberg. Lie group $Heis(V) := V \times U(I) \quad V_{1,2} \in V, \ Z_{1,3} \in U(I)$ $(V_1, Z_1) \cdot (V_2, Z_2) = (V_1 + V_2, e^{2\pi i \omega (v_1, v_2)} Z_1 Z_2)$ Heisenburg U(1) group X e^{2α:ω(v,v)}

Geometrically, Heis(v)
Principle U(1) bundle
Heis (v)
$$G L^{2}(L)$$
 reducible representation
Fact: Group structure \Rightarrow natural connection $\nabla = d + \lambda$
connection 1-form $\lambda = \sum p; dq$.
consume $d\lambda = \omega$!
(or, writing $V = T^{*}W$, λ is tautological 1-form l
 ω convenical symplectic form)
2. Heis (v) --> ??? build L us
 $\downarrow \qquad U(1)$ central extention
 $V \rightarrow V/\Lambda$ of V/Λ
define Discurve heisenburg Group $v_0 \in V/\Lambda$
Heis $(\Lambda, v_0) = \{(\lambda, e^{2\pi i} i\omega(v_0, \lambda)) | \lambda \in \Lambda\}$
Heis $(V)'_{Heis}(\Lambda, v_0) \longrightarrow V/\Lambda$ gives $U(1)$ bundle

"& line bundle" Define associated line bundle L: $V \times \left(\frac{\forall \lambda \in \Lambda}{(v, z)} 2\pi i \omega(v, \lambda)} e^{2\pi i \omega(v_0, \lambda)} \right)$ factor of automouphy e^{2 a : w (v,x)} contributes curvature w e^{2 tri (v, 1)} contributes curvature O flat line bundle on V/A paramertized by point VOE V/A Bun vin E w/ curvature W

Bunuto Eas a trähler mfld

Geometric, Quantization Shopping list (M.w) symplectic (L, J) w/ curvature w - holo structure on MAL => H= H°(M, L)

Bunyon as a Kahler mfld To finish quantizing, need to choose polarization Choose complex structure i on E Lets us use hodge decomposition: H'(E, IR) ~ H''(E, C) ~ C⁹ Complex vector space $\Rightarrow Bun_{(m)}(s) \simeq H^{''}(s, c)/H'(s, z) \quad (anplex tors)$ $\frac{e_{x powential}}{sequence} \approx H'(\xi, O^*) \quad \frac{p_{icard}}{O} \quad \frac{f_{map}}{holo} \quad \text{of deg}$

$$\begin{array}{c} & B_{\text{un}} \stackrel{\text{flat}}{}_{\text{u(i)}}(\textbf{z}) \simeq B_{\text{un}} \stackrel{\text{hol}}{}_{\text{u(i)}}(\textbf{z}) \\ & + \sigma \rho \sigma \sigma \gamma \quad \text{algebraic geometr.} \end{array}$$

Paramertizing complex tori

Geometric Quantization Shopping list - (M.w) symplectic - (L, V) w/ curvature w holo structure on MAL => H= H°(M, L)

Paramertizing complex tori let $V \simeq C^9$, $\Lambda = Span_{\mathbb{Z}}(a; b;) \simeq \mathbb{Z}^{29} \subset C$ as a $G\left[a_1, \dots, a_n\right] = G\left[a_1, \dots, a_n\right] = G\left[a_1$ row reduce! $\Lambda \sim \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix}$ $\Lambda \simeq \mathbb{Z}^{9} \oplus \mathcal{T}(\mathbb{Z}^{9}) \xrightarrow{T} de \text{ termines complex structure}$ of torus Geometric Quantization Shopping list (M.w) symplectic (L, J) w/ curvature 6 holo structure on MAL => H= H°(M, L)

Theta functions

Theta functions Using $\Lambda = \mathbb{Z}^9 \oplus \Upsilon(\mathbb{Z}^9)$, for $\vec{n} \in \mathbb{Z}^9$, $-S(z+\vec{n}) = S(z)$ $-S(z+T\vec{n}) = e^{-2\pi i (\frac{1}{2} \langle n, \gamma n \rangle + \langle n, z \rangle)} S(z)$ H°(Bun, (1), Ly) is the <u>holomorphic</u> s(2) satisfying above solutions are O-functions! $\Theta(z,\tau) = \sum_{n \in \mathbb{Z}^{2}} e^{-2\pi i \left(\frac{1}{2} \langle n, \gamma_{n} \rangle + \langle n, z \rangle\right)}$ fourier transform: $\tilde{\theta} = \sum_{p \in \mathbb{Z}^3} e^{-\tau_{i}(n,\tau_m)} S_n$ this is <u>unique</u> solution, so Hilbert space of "level 1" Chern simons & (E, j, level 1) = $H^{0}(Bun_{(n)}, d_{\theta}) \simeq C \quad \widehat{\Theta}(z)$

Torus $T_z = V / Z^9 \oplus \mathcal{C}(Z^9)$ Sections of θ line bundle \mathcal{L}_{θ} are holomorphic functions S(z) s.t. T_z

the forier transform of 6 function is a comb of dirac deltar, with amplitude anthelled by a gaussian. This looks an awfol lot like the favior transform of the fundamental solution to the heat our!

Level KEZZ20 Consider H° (Bunuro, Lot) sections of Lo transform as -S(z+h)=S(z) $- S(z + \Omega n) = E_{h}(z)^{h} S(z)$ solutions indexed by $m \in \mathbb{Z}_{r}^{9} = (\mathbb{Z}/r\mathbb{Z})^{9}$ $\Theta_{m}(z, T) = \sum_{n \in \mathbb{Z}^{9}} e^{\frac{\pi i}{r} \langle n, T n \rangle + 2\pi i \langle z, n \rangle}$ $\Rightarrow \dim H^{U}(Bun_{U(1)}, \mathcal{L}_{g}^{\kappa}) = \kappa^{g}$ (Bunun, Ka) geometric Quantization H(E, j, level = k) = H" (Bun uni (5), 26) = 0-

Invariance of polarization

Invariance of Polarization

We made up a complex structure is on Σ to Quantize Bunucial (S) $\longrightarrow \mathcal{H}(\Sigma, S)$ Q: how does $\mathcal{H}(\Sigma, S)$ depend on S?

only j-dependence comes thru complex structure On Bunuco (E), measured by period matrix ? Riemann bilinear relations: $\tau = \tau^{T}$ space of 2 satisfying & is called the Segal upper half-spule Ig Facts: $J_g = Sp(2g, |R)/U(g)$ { complex structures } \hookrightarrow { space of polarized } J_g for genus g Ξ } \hookrightarrow { complex two } Sp(2g, Z)

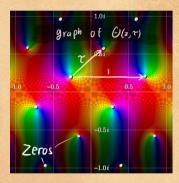
Projective Connection & Heat equation

Projective Connection & Heat equation First, Kahler Quantize (V.w): Heis (V) gives line budle dy V w/ conative a Say a complex structure J:V->V is compatible if J2=-1, w(Ju,v)>0 Fact: for J compatible H°(V, L) is irrep of Heis (V) Thm (Stone - von neumann): Heis (V) has unique irrep up to scale Fact: compatible J also paramentized by Jg. =) must be a projetivly flat connection cn $\mathcal{H}_{\tau}(v) = H^{o}_{J_{\tau}}(V_{J}d) \tilde{\chi}(v)$ $\mathcal{H}_{\mathcal{X}}(V) = \mathcal{H}_{\mathcal{J}_{\mathcal{X}}}(V,\mathcal{A})$ $\tilde{\mathcal{Y}}(W)$ Thm: The connection on $\mathcal{J}_{\mathcal{Y}}$ is $\mathcal{S} = \mathcal{S} - \mathcal{O}$ where the connection H-form $\mathcal{O} \in \Omega'(\mathcal{J}_{\mathcal{Y}}, \operatorname{End}(\tilde{s}))$ is $0 = dT_{ij} dz_i dz_j$ Q'(Jg) End HO (V,d)

(Tis are coords on In $\begin{cases} \partial_{z_i} \partial_{z_j} & \Theta(z_j, \tau) \\ So & \partial_{z_i} \partial_{z_j} \in End \\ H_{J_T}^{o}(V_j, L) \end{cases}$

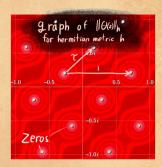
Projective connection & Heat equation 2 so, parnulel transport of sections achieved by solving heat equation: if T(t) path in Jg, then a section S is parall if $\frac{\partial}{\partial t}$ S $(z, \tau(t)) = \sum \tau_{i,j}^{(t)} \partial_{z_i} \partial_{z_j} S(z, \tau(t))$ this, carries over immediatly to quartizations of V/Λ , w/ sections $\bigoplus_{m=1}^{K} (z_{n} \tau) = \sum_{m=1}^{K} e^{i \pi i (\langle z_{n} w | i \neq \langle n, \tau_{m} \rangle)}$ ma h=m mod tr $\underline{\operatorname{Thm}}: \frac{\partial}{\partial \mathcal{T}_{i}} \mathcal{O}_{m}^{\dagger}(Z, \tau) = \frac{1}{4\kappa \pi} \frac{\partial}{\partial Z_{i}} \frac{\partial}{\partial z_{i}} \mathcal{O}_{m}^{\dagger}(z, \tau)$ Q: why heat equation ?? A: Deformations of J come from flows of Quadratic, positive Hamiltonians & these act by 2nd order, elliptic operators after Quantization

O-functions as Heat Kernel $\frac{\partial \Theta(z, \gamma)}{\partial \tau_{ii}} = \frac{\partial^2 \Theta(z, \gamma)}{\partial z_i, \partial z_j}$ Take Tij (+) = + Sij: $\Theta(z, \delta \mathbf{I}) = \sum_{\mathbf{n} \in \mathcal{D}} e^{-\hat{\mathbf{I}} \cdot \langle \hat{\mathbf{n}}, \hat{\mathbf{n}} \rangle^{\frac{1}{2}}} e^{2\pi i \langle \hat{\mathbf{n}}, \mathbf{z} \rangle}$ Then $\frac{\partial}{\partial t} \Theta(z, \tau(t)) = \sum \frac{\partial^2}{\partial z^2} \Theta(z, \tau(t))$ heat equation! in fact, $\Theta(z, \tau(1))$ is fundamental solution of 2,0:00 meaning Q(z, T(+1) +>0 So Proof: $U(z,0) = \sum_{\lambda \in \mathbb{Z}^{n}} e^{2\pi i \langle \lambda, z \rangle} = \sum_{\lambda \in \mathbb{Z}^{n}} \delta_{\lambda}$ = So on VIR/779 real part of V Example: g=1 $(f(z, \tau)) = \sum_{\substack{n \in \mathbb{Z} \\ \{\tau \in C \mid im \tau \neq 0\}}} e^{2\pi i \left(\frac{1}{2}n^2 \tau - nz\right)}$



$$\begin{array}{l} (\widehat{\mathcal{O}} - \widehat{\mathcal{f}} \text{ un } c \widehat{\mathcal{T}} \text{ igns } as & \text{Heat } Kernel \\ & \frac{\partial \mathcal{O}(z, \Upsilon)}{\partial \tau_{i;}} = \frac{\partial^2 \mathcal{O}(z, \mathcal{T})}{\partial z_i \partial z_j} \\ \widehat{\mathcal{T}} \text{ take } \widehat{\mathcal{T}}_{i;}(t) = + \mathcal{S}_{i;}; \\ \widehat{\mathcal{O}}(z, \mathcal{S} I) = & \sum_{\substack{n \in \mathbb{Z}^3 \\ n \in \mathbb{Z}^3}} e^{-\Re \cdot \langle \widehat{n}, \widehat{n} \rangle +} e^{2\pi i \langle \widehat{n}, 2 \rangle} \\ \widehat{\mathcal{T}} \text{ then } & \frac{\partial}{\partial t} \mathcal{O}(z, \Upsilon(t)) = & \sum_{\substack{n \in \mathbb{Z}^3 \\ i \neq i \neq 2}} \frac{\partial^2}{\partial z_i^2} \mathcal{O}(z, \Upsilon(t)) & \text{heat } \\ equation! \\ \widehat{\mathcal{T}} \text{ fact } (\widehat{\mathcal{O}}(z, \Upsilon(t))) & \text{ is fundamental solution } of \partial_i \widehat{\mathcal{O}} \mathcal{O} \mathcal{O} \\ \text{meaning } & \widehat{\mathcal{O}}(z, \Upsilon(t)) & \frac{1 + 20}{2} \sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq i \neq 2}} \frac{\partial \widehat{\mathcal{C}}_i (\widehat{z}, \widehat{z})}{\sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq i \neq 2}} \sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq i \neq 2}} \frac{\partial \widehat{\mathcal{C}}_i (\widehat{z}, \widehat{z})}{\sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq i \neq 3}} \sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq 3}} \frac{\partial \widehat{\mathcal{C}}_i (\widehat{z}, \widehat{z})}{\sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq 3}} \sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq 3}} \frac{\partial \widehat{\mathcal{C}}_i (\widehat{z}, \widehat{z})}{\sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq 3}}} \sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq 3}} \frac{\partial \widehat{\mathcal{C}}_i (\widehat{z}, \widehat{z})}{\sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq 3}}} \sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq 3}} \sum_{\substack{n \in \mathbb{Z}^3 \\ f \neq i \neq$$

and the second se

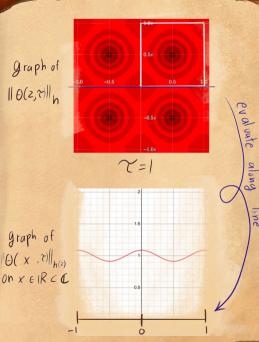


https://samueli.li/complex-function-plotter/#abs(sum(exp(2"piTi(n%5E2"(a%2Bitb) %2F2%2Bntz))%2Cn%2C-10%2C10))*exp(-pi%2Fb*abs(imag(z))%5E2)

hermitian metric

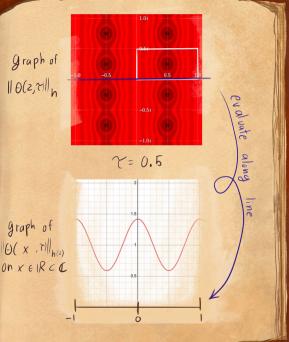
$$h(z) = e^{-\frac{\alpha}{1m^2} |im^2|^2}$$

O-functions as Heat Kernel $\frac{\partial \Theta(z, \tau)}{\partial \tau_{ij}} = \frac{\partial^2 \Theta(z, \tau)}{\partial z_i, \partial z_j}$ take Tis (+) = + Sis: $\Theta(z, \delta I) = \sum_{n \in \mathbb{Z}^{2}} e^{-\Re(\langle \vec{n}, \vec{n} \rangle)^{\dagger}} e^{2\pi i \langle \langle \vec{n}, Z \rangle}$ Then $\frac{\partial}{\partial t} \Theta(z, \mathcal{T}(t)) = \sum_{i=1}^{2} \frac{\partial^2}{\partial z^2} \Theta(z, \mathcal{T}(t))$ heat equation! in fact, $G(z, \tau(z))$ is fundamental solution of 2,6:06 Meaning $G(z, \tau(t)) \xrightarrow{t \to 0} S_{o}$ Proof: $(J(z,0)) = \sum_{\lambda \in \mathbb{Z}^{2}} e^{2\pi i \cdot (\lambda, z)} = \sum_{\lambda \in \mathbb{Z}^{2}} \delta_{\lambda}$ = So on V^{IR}/729 real purt of V Example: g=1 $\left(\begin{array}{c} \Theta(z, \tau) \\ \varepsilon_{rec}(z, \tau) \end{array} \right) = \sum_{n \in \mathbb{Z}} e^{2\pi i \left(\frac{1}{2} n^2 \tau - nz \right)}$ Ere C [im 2 703

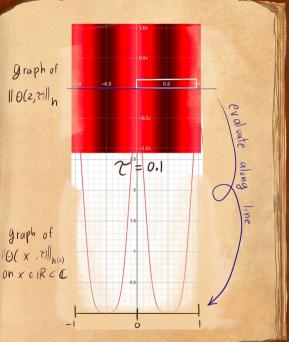


along

O-functions as Heat Kernel $\frac{\partial \Theta(z, \tau)}{\partial \tau_{ij}} = \frac{\partial^2 \Theta(z, \tau)}{\partial z_i \partial z_j}$ take Tij (+) = + Sij: $\Theta(z, \delta I) = \sum_{n \in \mathbb{Z}^{2}} e^{-\Re(\langle \vec{n}, \vec{n} \rangle)^{\dagger}} e^{2\pi i \langle \langle \vec{n}, Z \rangle}$ then $\frac{\partial}{\partial t} \Theta(z, \tau(t)) = \sum_{i=1}^{n} \frac{\partial^2}{\partial z^2} \Theta(z, \tau(t))$ heat equation! in fact, $\Theta(z, \tau(1))$ is fundamental solution of 2,0:00 meaning G(z, T(+1) +>0 So Proof: $U(z,0) = \sum_{\lambda \in \mathbb{Z}^{2}} e^{2\pi i \langle \lambda, z \rangle} = \sum_{\lambda \in \mathbb{Z}^{2}} \delta_{\lambda}$ = So cn V^{IR}/779 real port of V Example: g=1 $\left(\begin{array}{c} \Theta(z, \tau) \\ \varepsilon_{T}(z, \tau) \end{array} \right) = \sum_{n \in \mathbb{Z}} e^{2\pi i \left(\frac{1}{2} n^2 \tau - n z \right)}$ Ere C [im 2 703



O-functions as Heat Kernel $\frac{\partial \Theta(z, \chi)}{\partial \tau_{ii}} = \frac{\partial^2 \Theta(z, \chi)}{\partial z_i \partial z_j}$ take Tis (+) = + Sis: $\Theta(z, \delta I) = \sum_{n \in \mathbb{Z}^2} e^{-\widehat{U} \cdot \langle \vec{n}, \vec{n} \rangle t} e^{2 \alpha i \langle \vec{n}, 2 \rangle}$ then $\frac{\partial}{\partial t} \Theta(z, \tau(t)) = \sum \frac{\partial^2}{\partial z^2} \Theta(z, \tau(t))$ heat equation! in fact, $\Theta(z, \tau(1))$ is fundamental solution of 2,0:00 meaning (2,7(+1) +>0 So Proof: $(J(z,0)) = \sum_{\lambda \in \mathbb{Z}^{n}} e^{2\pi i \cdot (\lambda, z)} = \sum_{\lambda \in \mathbb{Z}^{n}} \delta_{\lambda}$ = So on VR/779 real part of V Example: g=1 $\left(\begin{array}{c} \Theta(z, \tau) \\ \Theta(z, \tau) \end{array} \right) = \sum_{n \in \mathbb{Z}} e^{2\pi i \left(\frac{1}{2} n^2 \tau - n z \right)}$ Ere (1 im 7 703



O-functions as Heat Kernel $\frac{\partial \Theta(z, \tau)}{\partial \tau_{ii}} = \frac{\partial^2 \Theta(z, \tau)}{\partial z_i \partial z_j}$ take Tij (+) = + Sij: $\Theta(z, \delta I) = \sum_{n \in \mathbb{Z}^{2}} e^{-\Re(\langle \vec{n}, \vec{n} \rangle)^{\dagger}} e^{2\pi i \langle \langle \vec{n}, Z \rangle}$ then $\frac{\partial}{\partial t} \Theta(z, \tau(t)) = \sum_{i=1}^{2} \frac{\partial^2}{\partial z^2} \Theta(z, \tau(t))$ heat equation! in fact, $\Theta(z, \tau(1))$ is fundamental solution of 2,0:00 Meaning $G(z, \tau(t)) \xrightarrow{t \to 0} S_{o}$ Proof: $(J(z,0)) = \sum_{\lambda \in \mathbb{Z}^{n}} e^{2\pi i \cdot (\lambda, z)} = \sum_{\lambda \in \mathbb{Z}^{n}} \delta_{\lambda}$ = $S_0 \text{ cn } V^{\text{IR}}/729 \text{ real part of } V$ Example: g=1 $\left(\begin{array}{c} \left(z, \gamma \right) \\ \varepsilon_{TC} \left(z \right) \\$ Ere (1 im 7 703

