Riemann-Roch

· holomorphic fins not localized - "sees" whole space - Goal: probe topology w/ holo/mero fins

X compact Riemann Surface (dimeX=1)

Q: # independent holo. fns? A: 1 (constant)

Q: # independent mero. fns? A:
Q: # independent mero. fns w/ prescribed poles/Os?

A: finite \(\xi\) interesting...

f mero on X: X curve \Rightarrow f'(0), $(\frac{1}{4})$ (0) set of pts

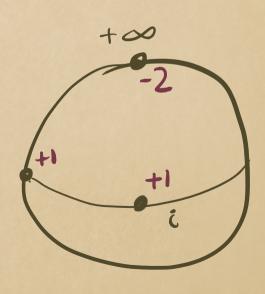
Def: Divisor (a) a formal sum of pts of x

→ Δ= Σm; P;, m; εZ, P; εX, sum is finite

Divisor of f: add Os/poles W/ multiplicity given by order

Divisors

$$f(z) = (z-1)(z-i)$$



option 1: trivial bundle, section w/ Pole

option 2: twisted bundle, section w/o Pole

trivialization

· section w/ pole/zero => twisted section w/o pole/zero

· start w/ trivial bundle O: → twist all points in △, get O(△) - holo. section of $O(\Delta) \Longrightarrow$ section of O(M) Divisor Δ

· Twist from each zero (Pole) increments (decrements) c, (O(a)) \hookrightarrow $ch_1(O(\Delta)) = \Sigma m_i$

Implicit description of O(A):

 $O(\Delta) = \text{sheaf of mero fins } f \text{ w/ } div(f) + \Delta \ge O$ if $\Delta = \sum m_i P_i$, f@P: has lowest order $\ge -m_i$ f "better behaved" than \(\rightarrow\)

locally free rank 1 O-module > line bundle!

Deriving R-R

 $O(\Delta)$ & O only differ O pts in $\Delta \Rightarrow J$ sky srvaper sheaf $J_{P_i} = C^{m_i} : \text{corresponds to } \underbrace{\sum_{m_i \in k \neq 0} C_k z^m \text{ of } O(\Delta)}_{m_i \in k \neq 0}$

• X has genus g: $H'(x) = H^{0,1}(x) \oplus H^{1,0}(x) = C^{29} \Rightarrow H^{0,1}(x) = H^{1}(0) = C^{9}$

· X compact \Rightarrow holomorphic fins constant \Rightarrow H'(O)=C · J has support of dimension $0 \Rightarrow$ H'(J)=0

Deriving R-R (2)
$$0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$$

$$0 \longrightarrow H^{0}(\Theta) \longrightarrow H^{0}(\Theta(\Delta)) \longrightarrow C \xrightarrow{\Sigma m_{i}} H^{1}(\Theta) \longrightarrow H^{1}(\Theta(\Delta)) \longrightarrow H^{1}(\mathcal{J})$$

$$h^{0}(\Theta(\Delta)) + h^{1}(\Theta) = h^{0}(\Theta) + \sum m_{i} + h^{1}(\Theta(\Delta))$$

$$\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1$$

R-R Interpetation

$$h'(E) = c_1(E) + 1 - (9 - h'(E))$$
(1)
(2)
(3)

Serre Duality:

H'(E)= H'(X, N'E)

= H'(K, K'OE)

E-valued 1-forms

 $h^0(\mathcal{O}(0))$ wants to be $\leq m_i + 1$: on C, for $m_{i=1}$ poles @ distinct pts P_1, \dots, P_n , $f = a_0 + \sum_{i=1}^n \frac{a_i}{z - P_i}$

- (2) to extend local meromorphic fins to global is a cohomology Problem; obstruction is $H^{0,1} = C^9$
- (3) is correction to (2), cohomology classes which do not affect {Pi} (vanish on {Pi})

Analytic
$$h'(E)-h'(E)=c_1(E)+1-9$$
 topological $0 \rightarrow 0 \rightarrow \Omega^0(E) \xrightarrow{\delta_E} \Omega^{0,1}(E) \rightarrow 0$

index $\partial_{E} := \dim \ker \partial_{E} - \dim \operatorname{coker} \partial_{E}$ Ker $\partial_{E} = \operatorname{holomorphic}$ sections of $E = H^{0}(E)$ coker $\partial_{E} = H'(O)$, by L.E.S $\Omega^{0}(E) \xrightarrow{\partial_{E}} \Omega^{0,1}(E) \rightarrow H'(O) \rightarrow H'(\Omega^{0}(E))$

index
$$\bar{\partial}_E = c.(E)+1-9$$

- · R-R is prototypical index theorem:
- · Vector bundle V on surface:

$$h'(v) - h'(v) = ch_1(v) + rank(v)(1-9)$$

- · Hirzebruch-Riemann-Roch: X compact, complex $Z(-1)^i h^i(V) = \int_X ch(V) td(X)$
- *Atiyah-Singer index thm: Delliptic, X cmpt index D = Sx ch(D) td(x)

analysis

topology

Sources:

- · Complex analytic and differential geometry, Demailly, section 6.10
 - · Riemann Surfaces, Donaldson, section 12.1