Kempt-Ness Theorem thru geometric Quantization Prelude: Graps act Twice consider the perrensal example of hamiltonian grap actions, 5'GC graph of (C, dzadz) is a symplectic manifold Э м(z) SGC defined by $e^{i\theta} z = e^{i\theta} z$ generated by Hamiltonian vector field $X_{M} = (-Y, X)$ w/ "Moment map" $\mathcal{M}(z) = \frac{1}{2} |z|^2$ $|ittewise, SG(viq) e^{i\theta}(z_1, z_2) = (e^{i\theta}z_1, e^{i\theta}z_2) has moment map \mathcal{M}(z_1, z_2) = \frac{1}{2}|z_1|^2 + \frac{1}{2}|z_2|^2$ We want to take the Quotient C^2/s^2 . But this has no symplectic structure not even infiniterimally. $T(C^{2}/s) = TC^{2}/\chi_{M} \quad \text{cunnot be a symplectic vector space} \qquad Motto:$ On symplectic space, directions are pared: $\omega = (d_{x_{1}}d_{x_{1}}) \cdot (d_{x_{2}}d_{y_{2}}), \qquad Motto:$ In Symplectic Geometry, in pairing induced by the almost complex structure $J = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \qquad Graps \quad act \quad twice$ Instead, want TC2/20 0: This does have an induced symplectic structure Note $JX_{M} = VM$, so $TC^{2}/JX_{M} = \text{Ker } dM = TC^{2}/X_{M}, JX_{M} = \text{Ker } dM / X_{M}$ To globalize this construction, define $C^{2}/JSI = M^{-1}(C)/S^{1}$ reduction $T(C^{2}//S)$ hopf 2 slashes $C^{2}/(s') = C^{3}/(s') = C^{2}/(s') = C^{$ Alternatively: $C|P' = C^2 - \frac{203}{C^{+}}$ where action of C^{*} defined by $0 + \frac{2}{C}$ (Xm, JXm) We encode the paired directions of the action of 6 w/ the action of the complexification G. $GG(X,\omega)$ is <u>bumiltonian</u> if it has a moment map $M: X \rightarrow \text{Lie}(G)^* = g^*:$ i.e, • action of G on X generated by $V_3 \in T(TX)$ for $3 \in \mathfrak{g}$, $k = \omega(V_3, \bullet) = d < \mathfrak{M}(X, \mathfrak{F})$ • M is equivariant wrt coadjoint action GG_2^{t} : $M_{A}V_{3} = Gd_{3}^{*}$, $ad_{a}^{*}(\cdot, \sigma) := \langle \cdot, [3, \sigma] \rangle$ then $\chi//G := M^{-1}(0)/G$ is a symplectic manifold assume $GGM_{0}^{-1}(0)$ freely for X trahler, with GGX Preserving the complex structure, we have Kempt-Ness Theorem (1419) $X//G = X'/G_{C} := X//G_{C}$ where $X'' \in X$ open dense set of "symplectic reduction = GIT Quotient" (0+2) "GIT semi-stable Pts", up to equivelence, "symplectic reduction = GIT Quotient" (0+2) "GIT semi-stable Pts", up to equivelence, which I will define later

Kempt-Ness, like all the best theorems, is a motto: something. You expect to hold in any setting where it can be stated. It suggests dual symplectic geometry & complex beometry perspectives, extending the Compact Grap / complex group perspectives on Lie theory

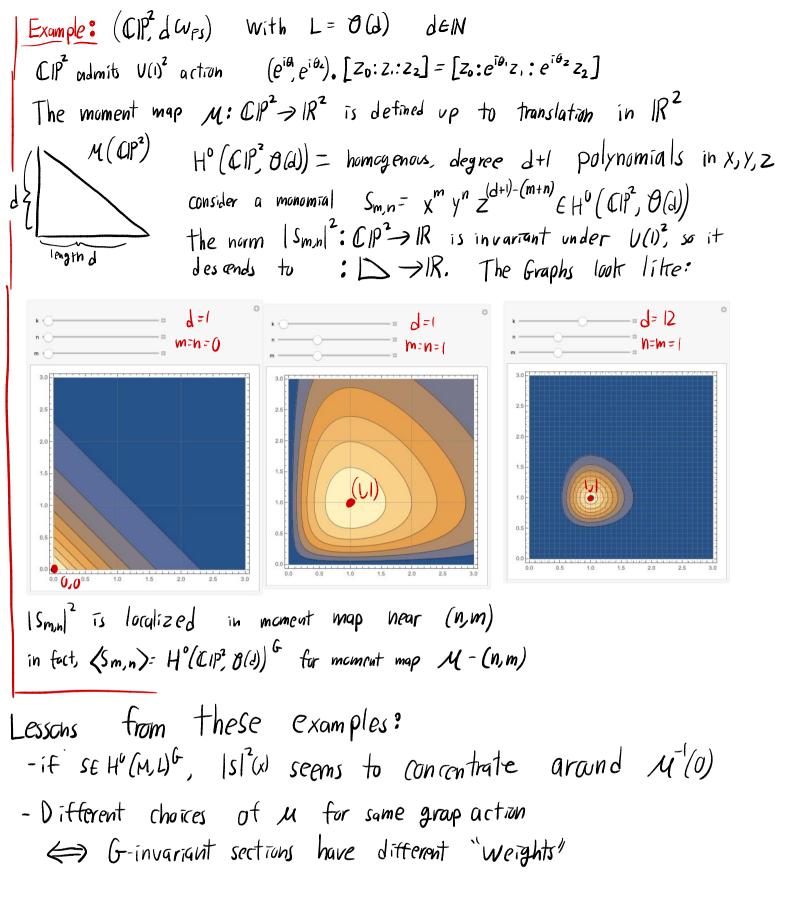
Taday I will tell you about a different motto: Guilleman-Sternberg: $(X/G)_{Quantum} = (X_{Quantum})^G$ "Quantization commutes with reduction" Conjecture (1982) • $(X/G)_{Quantum} = (X_{Quantum})^G$ "Quantization commutes with reduction" shortened in paper titles to "[Q, R] = 0" and convince you that these two mottos are the same. Then, were proven at the ~same time, in different settings, with analogous arguments.

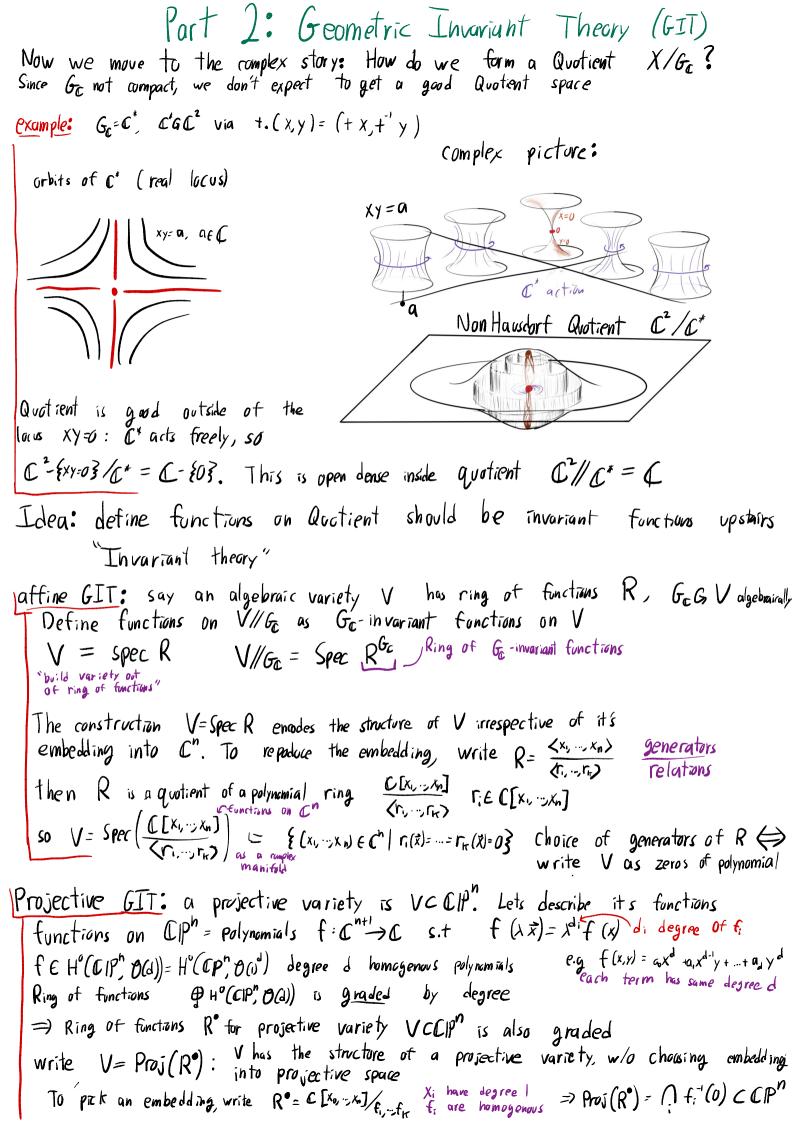
Part 1: Geometric Quantization Quantization Classial phase space Symplectic manifold (x,a) Symplectic manifold (x,a) hilbert space For any Quantization Procedure: - the vectors in Xauantum veprosent "wavefunctions" living over (X,w) - a G-action GG(X,w) preserving a C a linear G-action GGXQuantum "functoriality" Guilleman - Sternberg conjecture: Proven in 1982 for Kahler Quantization: (X, W, J) Kahler manifold Let $L \rightarrow X$ be the Prequantum line bundle: · L holo. Line bundle, <>> hermitian metric w/ curvature equal to kuhler form w $\chi_{Quantum} = H^{o}(X, L)$ holo. sections of prequantum line bundle say GGX preserves W & J: Then X//G is also Kahler define reduced prequantum bundle as $\frac{L/16}{16}$ where $\Gamma(X/16, L/16) = \Gamma(\Lambda i^{-1}(0), L)^{6}$ $\Rightarrow (X/16) = L^{0}(X/16, L/16)$ $X/16 = X_{0}/6$ sections are G-invariant sections on Xo $\Rightarrow (X/G)_{Quantum} = H^{\circ}(X/G, L/G)$ L/16 carries induced holomorphic & hermitian structure

Action of G on H⁴(XL):
We derive two infinitesimally via an action of g on
$$\Gamma(X,L)$$

ach SEG. defines a differential quarter $D_3:\Gamma(X,L)$, satisfying $[D_5, D_6] = D_{X,C}$
first guess: $D_3 \stackrel{?}{=} \nabla_{V_3}: \Gamma(X,L)$ private of number
fails consultion relates $2: [\nabla_{V_3} \nabla_{V_3}] \stackrel{?}{=} \nabla_{U_3 V_3} \stackrel{?}{=} in(V_1,V) + \nabla_{T_{XC}}$
Gitection: $D_3 \stackrel{?}{=} (\overline{V}_1, \overline{V}_{D_3}] \stackrel{?}{=} V_{U_3 V_3} \stackrel{?}{=} in(V_1,V) + \nabla_{T_{XC}}$
definition $P_{V_1 V_3} \stackrel{?}{=} i(V_{V_1}, V_{D_3}] \stackrel{?}{=} i[\overline{V}_{V_2}, C_{AST}]$
definition $P_{V_1 V_3} \stackrel{?}{=} i(V_{V_2}, C_{AST})$
definition $P_{V_1 V_3} \stackrel{?}{=} i(V_{V_3}, C_{AST}) \stackrel{!}{=} [\overline{V}_{V_1}, f] \stackrel{!}{=} (\overline{V}, f) \stackrel{!}{=} df(V)$ s
definition $P_{V_1 V_3} \stackrel{?}{=} i(V_{V_3}, C_{AST}) \stackrel{!}{=} (\overline{V}_{V_1 V_3} \stackrel{!}{=} i(V_{V_2}, C_{AST})$
 $\stackrel{!}{=} \overline{V}_{V_1 V_3} \stackrel{!}{=} i(V_{V_3}, C_{AST}) \stackrel{!}{=} i(V_{V_3}, C_{AST})$
 $\stackrel{!}{=} \overline{V}_{V_1 V_3} \stackrel{!}{=} i(V_{V_3}, C_{AST}) \stackrel{!}{=} i(\overline{V}_{V_3}, C_{AST})$
 $\stackrel{!}{=} \overline{V}_{V_1 V_3} \stackrel{!}{=} i(V_{V_3}, C_{AST})$
 $\stackrel{!}{=} \overline{V}_{V_1 V_3} \stackrel{!}{=} i(V_{V_3}, C_{AST})$
 $\stackrel{!}{=} \overline{V}_{V_1 V_3} \stackrel{!}{=} i(V_{V_3}, C_{AST})$
 $\stackrel{!}{=} \frac{P_{V_1 V_3} \stackrel{!}{=} i(V_{A}, V_3) \stackrel{!}{=} i(V_{A}, C_{AST})$
 $\stackrel{!}{=} \frac{P_{V_1 V_3} \stackrel{!}{=} i(V_{A}, V_3) \stackrel{!}{=} i(V_{A}, C_{AST})$
 $\stackrel{!}{=} \frac{P_{V_1 V_3} \stackrel{!}{=} i(V_{A}, V_3) \stackrel{!$

Example:
$$(X, \omega) \in (C, dzxis)$$
, requirem line budle $\frac{1}{2} \in A_{n}$ derivition inchire $\langle S_{1,2}(\omega) = s, \overline{s}, e^{-i\omega/2}$
 $S' action on $\Gamma(C, L)$ generated by $O_{1,S} = \nabla_{X,S} + iMS$
choose trivialization $e(z) = 1$ of L . In these cards, $\nabla = d + W$
 $w = \partial \log |e|^{2} = \partial |og| e^{-i\pi/2} = -\partial M$ The chemication happens to involve the
 $woment map in this case$
So $\nabla_{X,S} = dS(A_{1}) + \partial A(X_{n}) \cdot S$. To apply moment map condition
 $= \frac{1}{2} (\omega(X_{n}(X_{n}) - i \omega(X_{n}, TX_{n})))$ use compatible metric
 $= \frac{1}{2} [JX_{n}]^{2} = \frac{1}{2} [\nabla M^{2}]$
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n})))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n})))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n})))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n})))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n})))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n})))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n}))$ use compatible metric
 $= \frac{1}{2} (|\nabla U_{n}(X_{n}) - i \omega(X_{n}, TX_{n})$ use $(|\nabla U_{n}) - i \omega(X_{n})$ use $(|\nabla U_{n}) - i \omega(X_{n})$ use $(|\nabla U_{n}) - i \omega(X_{n})$ us$





Then
$$V//G_{\mathbb{C}} = Proj(R^{\circ}G_{\mathbb{C}})$$

Recall Kodaira embedding: $\frac{1}{X}$ hold the badde defines a map to projective space
 $i:X \rightarrow P(H^{\circ}(x_{1}))$ $e_{Y}(0:S(y)$ in roots, chose basis $i_{2}..., S_{n} \in H^{\circ}(X_{n})$. Tam, $x \mapsto [S_{0}(y):..., S_{n}(x)]$
Recall Kodaira embedding: if L has pairive curvalue, then $\exists d : t \rightarrow P(H^{\circ}(X_{n})^{1/2})$ is an embedding.
For example, if L is preparties the boddy, $\prod_{j \in (n-2)}^{n} (j = 2x_{j})$, so L surple
 $\exists cuntrable trahler main folds are projective, and $L = t^{2}(0)$
The 'ring of functions' on X is $R(X) = \bigoplus_{j \in (n-2)}^{0} H^{\circ}(X_{n}, L^{d})$, graded by power of prequestion
ince bondle
 $\Rightarrow X = Proj(R(X))$
Frequention line boundle L \oplus $D^{\circ}(i)$
 $ine boundle L$ $ine boundle L$ $H^{\circ}(X_{n}, L^{d})$, $H^{\circ}(X_{n})^{G_{e}}$
 $explicitly, X//S_{e}$ has 'taking embedding'
 $Recall Kong f: New Simpletre GIT
 $X//S_{e} = X//S_{e}$ $(X/G)^{G_{e}}$
 $H^{\circ}(X/S_{e}, L/S_{e}) = H^{\circ}(X_{e}, L)^{G_{e}}$
 $X//S_{e}$ cas only have to 's one' GIT ?
 $Vant to Pelate points in X//S_{e} w/ or bits in X
 $X//S_{e}$ cas only have to 's one' for X is the point of X where $H^{\circ}(X_{e})^{G_{e}}$ is point in X//S_{e}
 $x is specified for X^{\circ}(S_{e})^{i} f i is not S_{e}$, $X^{\circ}X^{\circ}X^{\circ}$
 $X is shale (s)$ if $G_{e,X}$ is class is $SX = X + X^{\circ}$
 $X = Vant to Pelate points in X//S_{e} w/ or bits in X
 $X//S_{e}$ cas only have to 's one' for X is the point of X where $H^{\circ}(X_{e})^{G_{e}}$ is point X/S_{e} .
 $X is shale (s)$ if $G_{e,X}$ is class in SS , $X = X + X^{\circ}$
 $X = X$ is deale (s) if if it is not SS, $X^{\circ} \times X^{\circ}$.
 $X = X$ is deale (s) if $G_{e,X}$ is class in SS , $K = X + X^{\circ}$
 $X = X$ is deale (s) if $G_{e,X}$ is class in SS , $K = X + X^{\circ}$
 $X = X$ is deale (s) if $G_{e,X}$ is class in SS , $K = X + X^{\circ}$
 $X = X$ is deale (s) if $G_{e,X}$ is class in SS , $K = X^{\circ}$ is $X = X$$$$$

Example: let
$$X = \|P^2$$
, $G_{c} = C'$, $\lambda \cdot [z_0:z_1:z_7] = [z_0: \lambda z_1:x_2z_3]$
roument unap picture for standard $U(1)^2$ action:
[U D:1]
[U D:1]
[U D:1]
[U D:1]
[U D:1]
[U D:1]
[U difference of the legander of

Part 3: Proving Quantization commutes w/ Reduction
Outline of prof

$$H^{0}(\chi,L)^{G_{c}} \stackrel{\sim}{=} H^{0}(\chi,S_{c})^{G_{c}} \stackrel{\simeq}{=} H^{0}(\chi,S_{c})^{G_{c}} \stackrel{\simeq}{=} H^{0}(\chi,M_{c})/(E_{c})$$

 U extend G-actim on X to G_{c} -action \mathcal{G} $\mathcal{K} \not E \mathcal{F}_{A}$
 (a) show that the actim of G_{c} is proved by $\chi_{A} \not E \mathcal{F}_{A}$
 (b) lift G-actim on X to G_{c} -action $\chi_{A} \not E \mathcal{F}_{A}$
 (b) lift G-actim on L to G_{c} action st $H^{0}(S,L)^{G_{c}}$
 (c) show that the G_{c} orbit of $\mathcal{A}(U)$ is the stable lack X^{S}
 (c) show that the G_{c} orbit of $\mathcal{A}(U)$ is the stable lack X^{S}
 (c) show that the G_{c} orbit of $\mathcal{A}(U)$ is the stable lack X^{S}
 (c) show that the Quatient map $H^{0}(\chi,L)^{G_{c}} \rightarrow H^{0}(\chi/G, M_{c})$ is an isomorphism
 D prove that the Quatient map $H^{0}(\chi,L)^{G_{c}} \rightarrow H^{0}(\chi/G, M_{c})$ is an isomorphism
 D ectording G to G_{c} : We work infinitionally, Lie $G_{c} = g^{C} \simeq g \oplus ig$
Define $G_{c} G_{X} \vee \pi^{2}$ $V_{ig} = J \vee_{g}$ for $ig \in ig$.
 (b) device $\mathcal{A}^{2} < \mathcal{A}_{S}$, $Sa \quad U_{ig} = J \vee_{g} = \nabla \mathcal{A}\mathcal{A}^{g}$
The complex frag action is generated by the fradient flow of the moment map
 (b) lift V_{ig} to act on $\Gamma(L)$ in the national way:
 $O_{ig} S = i O_{3} S$ for S holomorphic. We would this written as a Operator
Since S holomorphic, $\nabla_{S} \in Q^{U}(X)$ So, $i \nabla_{S} + \nabla_{S} = -(\nabla_{U_{ig}} + \mathcal{A}^{T}S)$
in particular, $\mathcal{F} S \in H^{0}(\chi,L)^{G}$ $O_{3} S = 0 \quad \forall g \in g$
 $M^{0}(\chi,L)^{G} = H^{0}(\chi,L)^{G}$
 $Su \quad G_{3} S = V \ Tse \ Tg \rightarrow S \ Sis \ G^{C} - invariant$.
Now we collect facts about invariant sections. let $s \in H^{0}(X,U^{G}$
 $V_{ig} | u^{2} = -2\mathcal{A}^{T} | S|^{2} \ Foolowerble (Computation)$
 $V_{ig} | u^{2} = -2\mathcal{A}^{T} | S|^{2} \ Foolowerble (Computation)$
 $V_{ig} | u^{2} = -\mathcal{A}^{T} | S|^{2} \ Foolowerble (Computation)$
 $V_{ig} | u^{2} = -\mathcal{A}^{T} | S|^{2} \ Foolowerble (Computation)$
 $V_{ig} | u^{2} = -\mathcal{A}^{T} | S|^{2} \ Foolowerble (Computation)$
 $V_{ig} | u^{2} = -\mathcal{A}^{T} | S|^{2} \ Foolowerble (Computation)$
 $V_{ig} |$

• The maximum of [s]⁴ occurs along
$$\mathcal{M}^{1}(0)$$
 (assuming $S\neq 0$)
Like we observed emphanially⁴
say xo is a global maximum of [s]². Then $V[s]^{2}(x_{0}=0)$ for any V . In pertudies
 $D = V_{15} \langle S, S \rangle_{x_{0}}^{2} = -2\mathcal{M}^{3} |s|^{2} |_{x_{0}}$
since $S\neq 0$, $|S(x_{0})|^{2} = max|S(x_{0})|^{2} = 0$. so, the above equality gives $\mathcal{M}^{3}(x_{0})=0$.
• Along any G_{0} -orbit $G_{0} \times \chi$, consider the function $Y(g)=|S(g,x)|^{2}$
if $K \in G$, then $|S(w_{0})|^{2} = |S(u|^{2})$. The compact part prepares norm. So, $\Psi(g)$ descends
to $\Psi_{2}^{*} \in (\sqrt{G_{0}} \rightarrow ||\mathcal{R}|| ||\mathcal{R}|| ||\mathcal{R}|| ||\mathcal{R}|| = 2$
Then Ψ_{x} is concave
[This is another consequence of our findamental competation
 $T \in (\sqrt{G_{0}} \times ||\mathcal{R}|| - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{5})|s|^{2} + \mathcal{M}^{3} + \mathcal{A}^{3}|s|^{2})$
 $= -2(||\mathcal{R}|\mathcal{A}||^{2}|s|^{2} + ||\mathcal{A}||^{3}|^{2}|s|^{2}) \leq 0$
(2) relationship with (semi) stable locus
The concavity of Ψ_{s} implies, along $G_{0} \times \chi$ [s]² has at ment 1 critical pt
from the fundamental competation, the critical points are exactly $G_{0} \times (\mathcal{A} + \mathcal{A}^{3}(0))$
 $= \operatorname{coch} G_{0} \operatorname{orbit}$ interacts $\mathcal{A}^{1}(0) \otimes \operatorname{at} \operatorname{most} 1 - \operatorname{corbit} 1$
 $O Ptrons: - ||s|^{2} - (1 - 2\mathcal{A}^{3}|s|^{2}) = -(1 - 2\mathcal{A}^{3}|s|^{2}) = -(1 - 2\mathcal{A}^{3}|s|^{2}) = 0$
 $(1 - 2\mathcal{A}^{3}|s|^{2} + |\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|^{2}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|^{2}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|^{2}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|^{2}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|^{2}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|^{2}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{3}|s|^{2}) = -2(\sqrt{M^{3}}(\mathcal{A}^{3}) |s|^{2} + |\mathcal{A}^{3}|s|^{2}) = 0$
 $(2 - 1 - 2\mathcal{A}^{$

$$|g|^{2} = 0 \text{ or } arbit$$

$$:if this is true for all settilized.$$

$$if this is true for all settilized.$$

$$if this is true for all settilized.$$

$$S_{1} = 0 \text{ or } arbit$$

$$S_{1} = 0 \text{ or } arbit$$

$$S_{1} = 0 \text{ or } arbit$$

$$S_{2} = 0 \text{ or } arbit$$

$$M^{-1}(0) = 0 \text{ or } size for action of 29$$

$$M^{-1}(0) = 0 \text{ or } size for action of 29$$

$$M^{-1}(0) = 0 \text{ or } size for arbit = 0 \text{ or } arbit = 0 \text{ or }$$

Proof of lemma. it suffices to find a single non-U function $S \in H^0(X,L)^G$. Indeed, $D = 5^{-1}(e)$ is a divisur which necessarily rentains X^U Guilleman-Steinberg argue for dim H°(X,L)⁶≠0 using fourier integral operators to estimate the rank of the Szego kernel - gress. We could alternativly use Kudaira embedding to make X a projective variety. Then we are in the setting of classic GIT. we want to show X//Ga = $Pre_{J}(gH'(x,t)^{G})$ is honempty. By GIT, $X//G_{c} \neq \emptyset$ if X has a semistable point. by our computation above, we know X has a semistable pt b. (M'(0) is honempty. The $\mathcal{O}(1)$ ip" graphs of norms of G-invariant section SE HO(X,L) G $> \frac{1}{|u|^2}$ in lift $|s|^2 \in$ $L = \tilde{z}^* O(1)$ D(-1)trempt-Ness proved: VEIP(V) is stable under GGV iff the orbit attains the infimum of $|V|^2$. (\Rightarrow) zero of moment map in $(|P, \omega_{FS})$ C.F "an orbit is stable if the g-invariant hold. section Isl2 altains its supremum