A & B Models: The story of mirror symmetry Elliot Kienzle UMD RIT in Geometry & Physics

A side B side Physics motivation Curve Counting / Landau - Ginzburg Gromov - Witten invariants model Quantum Cohomology Singularity Theory variation of semi-so Frobenius manifolds Hodge Structures Mirror Symmetry!

Physics Background 3 Def: Physics is the subfield of math studying integrals of the form $\int e^{-s(\phi)} D\phi$ • QFT defined by choice of $S(\phi)$ ("action") • Operators: $\langle O \rangle = (O(\phi) e^{-\frac{1}{5}S(\phi)} D\phi)$ Locality: consider $\phi \in \{ Maps \Sigma \rightarrow \chi \}$ Operators spanned by $O_{i}(x)$, fins of $x \in \Sigma$ $\mathcal{O}_{i}(x)\mathcal{O}_{i}(y) = \sum f_{ij}^{\mu}(x, y, z)\mathcal{O}_{\mu}(z)$ Encodes entire QFT!)

Nonlinear o-Model: · 2D theory on Riemann surface E: $\sum = \int_{\Phi: \Sigma \to X} e^{-\frac{1}{\hbar} \int_{\Sigma} \|d\phi\|^2}$ · Introduce supersymmetry: $\sum_{(X_1, X_2)} \implies \widetilde{\widetilde{Z}}(x_1, X_2, \theta^{\dagger}, \overline{\theta}, \overline{\theta}^{\dagger}, \overline{\theta}^{-})$ coordinates "N=2 extended X: COMMuting (bosons) $\Theta^{\mathtt{T}}, \overline{\Theta^{\mathtt{T}}}$ anticommuting (fermions) supersymmetry" -

Topological Theories
• Twist the Theory:
• Twist the Theory:
• Promote fermions to bosons
• 2 ways to do this:
•
$$\frac{A-twist''}{A-twist''}$$
 and $\frac{B-twist''}{B-twist''}$
* see appendix A @ out of slides for more info
2) Integrate them out
• Now action is topological!
• Doesn't depend on metric of Σ or X
• $\frac{D}{2} = \int_{\Omega} e^{-\frac{1}{T}} \int_{\Sigma} \phi^{*} \omega = \int_{\Omega} \frac{1}{T} \int_{\Sigma} \frac{1}{T} \int_{\Omega} \frac{1}{T} \int_{\Sigma} \frac{1}{$

Landau-Ginzburg Theories -2D, w/ fields in CN& Potential W: CN C $Z = \int_{\Phi: \Sigma \to \mathbb{C}^{N}} e^{-\frac{1}{\hbar} \left(\sum_{\Sigma} \|d\phi\|^{2} + \|\nabla w(\phi)\|^{2} \right)}$ Kenetic Potential · B-twist, & integrate oct extra variables -Get another topological theory! LB · Each L-G theory has dual o-model - Same physics - same chiral rings "Mirror Symmetry" Q: How do we formalize this?

Modulii of CFTs: • These are families of CFTs: conformally invariant - J-model: any Kähler structure gives CFT · any operator A deforms a theory: $S(\phi) \longrightarrow S(\phi) + S_{\xi} \delta \cdot A \qquad \delta <<|$ · Exactly marginal operators preserve conformal invariance - Tangent vectors" to CFT family (Maybe) Remarkable fact of 2D N=(2,2) theories: · Chiral ring = exactly marginal • exactly marginal => chiral ring (of A or B twist) Tangent space of CFT family encodes the physics!

0-Model modulii space: Kähler form: ω Chiral ring Kähler Theory space form: \mathcal{O}_{i} w $(\infty \text{ dimensions})$ 0,0 Modulii space of o-models Modulii space of Kähler structures

GOAL: state mirror symmetry Encode the "physics" w/ a mathetical structure Mirror Symmetry: isomorphism of σ & LG models

Physics guidance: Look for ring structure on some tangent space

Physics => Curve Counting • Want to make sense of expectation values $\langle O_1(s_1)...O_n(s_n) \rangle = \int O_1(\phi)...O_n(\phi) e^{-\frac{1}{\hbar} \int_{\mathcal{Z}} \phi^* \omega}$ $\int_{1,...,s_n} \epsilon \mathcal{Z}$ $\phi: \mathcal{Z} \rightarrow \chi$ holomorphic degree $\circ \text{Operators in } \sigma \text{-model represented by closed } \rho, q$ forms on χ - not dependent on position in Σ (as we expected!) $O_{i} \leftrightarrow O_{i}$ · Treat Si,..., Sn as marked points, property of map of $\int_{\substack{\varphi: \xi \to \chi \\ \bullet \text{ Split by homology class of the curve } \phi_*[\xi] \in H^2(X, \mathbb{Z})} \int_{\substack{\varphi: (\xi, \xi \leq i \} \\ \bullet \times \bullet}} e^*[\xi] \in H^2(X, \mathbb{Z})$ $\langle \mathcal{O}_{1} \dots \mathcal{O}_{n} \rangle = \sum_{\beta \in H^{2}(X, \mathbb{Z})} e^{-\frac{1}{\hbar} \int_{\beta} \omega} \int_{\substack{\varphi : \xi \to X \text{ holomorphic} \\ \varphi_{*}[\xi] = \beta}} e^{V_{1}^{*}(\mathcal{O}_{1}) \Lambda \dots \Lambda eV_{n}^{*}(\mathcal{O}_{n})}$

Modulii Space of Stable Maps

12

"Stable": finite automorphisms

Gromov - Witten invariants • evaluation map $e_{v_i}: \mathcal{M}_{q,n}(x, \mathcal{B}) \longrightarrow \chi$ -sends the it marked point to it's image for $\{\alpha_1, \dots, \alpha_n\} \in H^{\bullet}(X), \quad \beta \in H_2(X, \mathbb{Z}),$ $\langle \alpha, \dots, \alpha_n \rangle_g^{\mathcal{B}} := \int_{\left[\mathcal{M}_{g,n}(X, \mathcal{B})\right]} \operatorname{vir}^{\operatorname{ev}^*_1(\alpha_1)} \cdots \cdots \cdots \operatorname{ev}_n^*(\alpha_n)$ L If $\overline{\mathcal{M}_{g,n}(X,\beta)}$ not smooth, Choose your Gromov-Witten own homology class to integrate invariant against (the hard part)

$$\begin{array}{ll} & \operatorname{Gromov} - \operatorname{Witten} \quad \operatorname{Potential} & 14 \\ & \operatorname{Fix} \; \operatorname{genus} = 0 \; (\operatorname{don't} \; \operatorname{Know} \; \operatorname{why}), \; \operatorname{construct} \; \operatorname{generating} \; \operatorname{fn:} \\ & \varphi(\chi) = \sum_{m} \sum_{\beta \in H_2} e^{-\frac{1}{h} \int_{\mathcal{B}} \omega} & m \\ & \varphi(\chi) = \sum_{m} \sum_{\beta \in H_2} e^{-\frac{1}{h} \int_{\mathcal{B}} \omega} & \chi \\ & \varphi(\chi) = \sum_{m} \frac{1}{h} (\chi) & \varphi(\chi) = \sum_{\beta \in H_2} \frac{1}{h} (\chi) &$$

-This expansion contains every g=0 GW invariant!

Quantum Cohomology
• metric on
$$H^{\bullet}(X): g(T_{i},T_{j}) = \int_{X} T_{i} - T_{v}$$

• Quantum Cup Product **:
 $g(T_{i}*_{X}T_{j},T_{K}) = \sum \partial_{i}\partial_{j}\partial_{i}\Phi(X) \int_{X} T_{K} - T_{K}$
 $= \sum_{m} \sum_{m} \frac{q^{B}}{m!} \langle T_{i},T_{j},T_{K}, \underbrace{X_{j}}_{g=0} \\ \prod_{m} \sum_{m} \sum_{m} \sum_{m} \frac{q^{B}}{m!} \langle T_{i},T_{j},T_{K}, \underbrace{X_{j}}_{g=0} \\ \prod_{m} \sum_{m} \sum$

Quantum Cohomology as Deformation 16 • recall $q^{\beta} = e^{-\frac{1}{h}} \int_{\beta} \omega$ • w is Kähler, so is positive: $\int_{B\neq 0} w > 0$, $\int_{B=0} w = 0$ "Semiclassical limit": ħ→0 "large volume limit" Tormally, take $q^{\beta} \rightarrow 0$ for $\int_{\beta} w > 0$ $\langle \alpha_{1}, ..., \alpha_{n} \rangle_{0}^{B=0} = \begin{cases} \int_{X} \alpha_{1} \cdots \alpha_{n} & \text{if } n = \dim_{\mathbb{C}} X \\ 0 & \text{otherwise} \end{cases}$ $\mathcal{O}(\mathsf{T}_{i} *_{\mathcal{Y}} \mathsf{T}_{j}, \mathsf{T}_{\mathcal{K}}) = \sum_{n}^{k} \frac{1}{n!} \langle \mathsf{T}_{i}, \mathsf{T}_{j}, \mathsf{T}_{\mathcal{K}}, \vartheta, \cdots, \vartheta \rangle_{g=0}^{\beta=0}$ $= \langle T_i, T_j, T_k \rangle_{0,3}^0 = \int_X T_i \cup T_j \cup T_k$ $\Rightarrow T_i * T_j \rightarrow T_i \smile T_j \quad as \quad t_i \rightarrow 0 \quad !$

Associativity of Quantum Product:

$$(T_{i}*T_{j})*T_{\kappa} = T_{i}*(T_{j}*T_{\kappa})$$

$$\bigvee P^{log in } \Phi$$

$$\sum_{a,b} (\partial_{i} \partial_{j} \partial_{a} \Phi) g^{ab} (\partial_{\kappa} \partial_{\ell} \partial_{b} \Phi)$$

$$\prod$$

$$\pm \sum_{a,b} (\partial_{i} \partial_{\kappa} \partial_{a} \Phi) g^{ab} (\partial_{j} \partial_{j} \partial_{b} \Phi)$$

$$\stackrel{*}{} W DVV Equation''$$

$$(Witten - D_{ijkgraaf} - Ver | inde -$$

Recursive formula for GW invariants on CP² 18 $N_{d} = \left\langle \left[\mathbb{C}P' \right] \right\rangle_{q=0, n=3d-1}^{B=d \cdot [l]}$ Counts # degree d rational curves thru 3d-1 generic points WDVV gives: Theorem (Konstevich 1994): $N_{d} = \sum N_{d_{A}} N_{d_{B}} \left(d_{A}^{2} d_{B}^{2} \begin{pmatrix} 3d - 4 \\ 3d_{A} - 2 \end{pmatrix} - d_{A}^{3} d_{B} \begin{pmatrix} 3d - 4 \\ 3d_{A} - 1 \end{pmatrix} \right)$ dA+dB=q dA, dB 21

Algebra of Quantum Cohomology • under *x, H(X) is a unitial, associative algebra w/ metric g satisfying g(A * B, C) = g(A, B * C)• These are called Frobenius Algebras! • Paramertized by $\chi \in H_{\bullet}(\chi)$ recall goal: want product on the tangent space $T_{X}H_{\bullet}(x)\cong H_{\bullet}(x)$ Luckily, $T_X H_{\bullet}(X) \cong H_{\bullet}(X)$! KTi $\frac{1}{T_i *_y T_j}$ • Treat quantum cup product as $H_{\bullet}(x)$ frobenius algebra on $TH_{\bullet}(X)$

|q|

Frobenius Manifolds - Manifolds w/ locally constant frobenius algebra structure on TM (exactly what we were looking for !) Def: A Frobenius manifold is a mfld M w/ - a flat metric 9 (w/levi-civita connection - a associative Algebra product Μ $*_{x}$ on $T_{x}M$, w/ unit e_{x} $T_{x}M$ b satisfying compatability conditions: $\neg g(a *_x b, c) = g(a, b *_x c) \quad \neg \nabla e = O$ $a \mathbf{x}_{\chi} \mathbf{b}$ $(\Rightarrow \mathcal{A}(a,b,c):=g(a*b,c)$ is symmetric tensor) W/ (local) potential for $\overline{\Phi}: M \to C$ s.t $\mathcal{A}(a,b,c) = \partial_a \partial_b \partial_c \Phi \quad (\text{Think GW})$

Kähler deformations • Kähler form $\omega \in H^{1,1}$, positive $\left(\int_{\mathcal{B}} \omega \ge 0 \quad \forall \quad \mathcal{B} \in H_2(X, \mathbb{Z}) \right)$ -space of Kähler forms is a cone in $H^{1,1}$, $H_X^{1,1}$ Physical theories are more general: need complexified - a llow "B-fields": $\{B+i\omega \mid B \in H^2(X, \mathbb{R})\}$ $\mathcal{M}_{\text{kahler}} = \left\{ H^2(X, IR) + i H_X \right\} / H^2(X, Z)$ $TM_{Kahler} \cong H^2(X, IR)$ what we want Kahler cone

) 5 A-Side Story: O-model partition function Gromov - Witten invariants deformation of Quantum cohomology regular cohomology! Frobenius manifold Modulii space of Kähler deformations

Landau - Ginzburg Models: $Z = \int_{\substack{\varphi: \xi \to \chi}} e^{-\frac{1}{\hbar} \left(\int_{\xi} \left\| d \phi \right\|^{2} + \frac{\left\| \nabla W(\phi) \right\|^{2}}{\text{Kenetic}} \right)}_{\text{Kenetic}}$ Potential 1) Introduce supersymmetry 2) B-twist (fermions ⊨> bosons) 3) Integrate out twisted fields Get topological theory!

Renormalization:

- · Physical world is low energy: observed theorys are effective
- Renormalization: Change of effective theory based on energy scale - math: scale metric $g \mapsto \frac{1}{\lambda}g$: λ is length scale, $\lambda \sim \frac{1}{E}$
 - $S(\phi) = \int_{\Xi} \|d\phi\|^{2} + \|\nabla w(\phi)\|^{2} \qquad \|d\phi\|^{2} = g^{ij} \partial_{i} \phi \partial_{j} \phi$ $\cdot \lambda << | \Rightarrow \|d\phi\|^{2} \quad dominates \Rightarrow S(\phi) \quad becomes \quad \sigma - model \qquad ``zoom out''$ $\cdot \lambda >> | \Rightarrow \|d\phi\|^{2} \quad drops \quad out \Rightarrow S(\phi) \quad becomes \quad LG \quad model \quad ``zoom in''$

Analogy: Classical Particle on manifold $H = g^{ij} P_i P_j + V(x)$

-low energy -low velocity -depends on potential

-high energy -high velocity -depends on metric

Renormalization Group Flow:

29

30 Renormalization of potential •IR limit: Very Zoomed in ⇒ looks flat > can treat as fields in C^n : $(\phi_1, ..., \phi_n)$ · Write potential w/ taylor expansion scaling • renormalize: fields scale like $\phi \mapsto \lambda^{-l} \phi$ / dimension $-\phi^{\alpha} \cdots \phi^{\alpha} \mapsto \lambda^{-\mathcal{E}\ell;\alpha;} \phi^{\alpha} \cdots \phi^{\alpha}$ • only highest order term surves - quasihomogenous: $W_{eff}(\lambda'\phi_1, ..., \lambda''\phi_n) = \lambda' W_{eff}(\phi_1, ..., \phi_n)$ • renormalized action: $S(\phi) \xrightarrow{IR} W_{eff}(\phi, ..., \phi_n)$

Goal: Classify distinct LG theorys \iff Classify quasihomogenous polynominals up to coordinate transform

BRST Picture of Physical Operators

• Supersymmetry generated by operator Q `BRST charge" - `physical operators' obey supersymmetry: $[Q, P] \stackrel{=}{=} O$ $g_{raded} commutator$ - $[Q, \cdot]^2 = 0$, thus forms a complex

-Q-exact operators [Q, O] are trivial in path integral \Rightarrow Physically trivial -`physical operators' are Q-closed, defined up to Q-exact: Q-Cohomology

- Physical operators often cohomology groups:

 σ-model: Q= 3, physical operators = Complex cohomology classes H^{P.9}
- LG models: effective potential W
 Q-Closed: holomorphic functions of fields
 Q-exact: functions of form vⁱ. v_i. W
 (∂W/2,..., ∂w/2fk) = Ivw

Q: how to interpret as a Frobenius Manifold?

31

(local) Singularity Theory

Goal: Classify critical points up to coordinate transform • Consider $W: \mathcal{C}^n \to \mathcal{C}, \quad W(0) = \nabla W(0) = \mathcal{O}^n$ • Treat this locally: germ \mathcal{O}_{W} $\left(\mathcal{O}_{W}=\mathcal{O}_{W} \text{ if } \exists \overset{\circ}{U}\subseteq \mathcal{C}^{n} \text{ s.t } W_{U}=W'_{U}\right)$ - space of germs of fns $C^n \rightarrow C : O_n$ • Coordinate change: germ of biholomorophisms $g: \mathcal{I}^n \to \mathcal{I}^n$ $W \mapsto W \circ g$ want $O_n / O_w \sim O_{W \circ g}$ • infetesimal picture: $g_{+}: \mathbb{C} \to \mathbb{C}^{n}$ Jacobian ideal $I_{\nabla w}$! $W \sim W \circ g_{\dagger} \Rightarrow W \sim W + \frac{d}{d+} W \circ g_{\dagger} = W + \nabla W \cdot \frac{d}{d+} g_{\dagger}$ Local Ring Qw = On/IVW need a more Sophisticated Diffeomorphism invariant of critical point! invariant

32

Picard-Lefschetz Theory: 33 Morse Theory: level set topology change \iff critical point structure

Topology change

⇒crit point

index 1

Complex morse theory? Real isolated crit points $\Leftrightarrow [IR \cdot \epsilon_{03}, MfIJ_{R}]$ $IR \cdot \epsilon_{03} \simeq \epsilon_{-1,13}$: action of $\pi_{0}(MfIJ_{R})$ $Im \qquad C \cdot \epsilon_{03} \simeq S'$: action of $\pi_{1}(MfIJ_{C})$ $C \cdot \epsilon_{03} \simeq S'$: action of $\pi_{1}(MfIJ_{C})$ $C \cdot \epsilon_{03} \simeq S'$: action of $\pi_{1}(MfIJ_{C})$

Cohomology Bundle

B connected ⇒ · Paramertized family of manifolds Mb, beB Mb diffeomorphic -i.e fibration $\alpha: M \rightarrow B$ w/ fibers $M_b = \alpha'(b)$ · Mb has cohomology H"(Mb) Cohomology bundle: $\mathcal{H}_{\mathcal{H}}^{\mathsf{H}} = \bigcup_{b} \mathcal{H}^{\mathsf{H}}(\mathcal{M}_{b}), \quad \mathcal{K}^{*}: \mathcal{H}_{\mathcal{H}}^{\mathsf{H}} \to \mathcal{B}$ $\mathcal{H}^{\circ}(M_{\mathrm{b}})$ $\mathcal{X}^{*}(b) = H(M_{b})$ ℃¹ Н'(Мь)

• (locally) const transition fns: sheaf $\Gamma(\mathcal{H}^{r}\pi)$ is a local system $\Rightarrow \exists flat connection \nabla^{GM}$ on $\mathcal{H}^{r}\pi$ w/ locally const. horizontal sections ∇^{GM} is <u>Gauss - Manin Connection</u>

Unfoldings

·Want to strengthen Picard-Lefschetz invariant -PL invariant formed from deforming W by constant > What if we consider all possible deformations? • Unfolding: deformation of W paramertized by base Λ $W_{\lambda}(x): C^{n} \times \Lambda \rightarrow C$ in practice, $\Lambda = C^{M}$. $W_{\lambda}(x) = W(x)$ · versal unfolding: subsumes all other unfoldings (up to coordinates) every $W'_{\lambda'}(x) = W_{\theta(x)}(g_{\lambda'}(x))$ for some change of coords $g_{x'}(x)$ ·change of parameters O(X) • For basis $P_{1,...,P_{M}}$ of local ring $\mathcal{O}_{I_{\overline{V}W}}$ contains all infetesimally nonequivlent $W_{\lambda}(x) = W(x) + \Sigma \lambda; P_{1}(x)$ is versal

• M = dim O/IVW is minimal dimension of versal unfolding "milnor -M-dimensional versal unfolding is "miniversal" multiplicity"

Milnor Fibration

Choose UCCⁿ neighbourhood of isolated crit. point
 consider hypersuface V_λ = W_λ⁻¹(0), λεcⁿ
 restrict to Λccⁿ s.t V_{λεΛ} intersects ∂U transversely

 $\Lambda' = \{ \lambda \in \Lambda \mid V_{\lambda} \text{ is nonsingular} \}$

39

Structure of Milnor Fibration

40

Period Map: • (n-1) form Ψ on CⁿxA $-\Psi_{\lambda} = \Psi_{V_{\lambda}}; \Psi_{\lambda} \text{ closed, so } [\Psi_{\lambda}] \in H^{n-1}(V_{\lambda})$ - Y defines global section [4] of vanishing cohomology bundle [Y] is period map of Y <u>Residue form</u> (or <u>Gelfand</u>-<u>Leray form</u>): For n-form ω , \exists (n-1) form ns.t $n_{1}dW = \omega$. Restriction $\omega/dw_{\lambda} := nI_{V_{\lambda}}$ is unique

Geometric sections are of the form [w/dw], ·Vanishing cohomology over punctured dist T: Analytic form of Gauss - Manin: $\nabla_{\partial/at} [\Psi] = [d \Psi/dw]$

Analytic solution to Gauss - Manin: 42
choose coordinates
- Pick n-forms
$$\omega_{1,...,\omega_{M}}$$

> $[\omega_{i}/\partial w]$ are basis of geometric sections
- $\nabla_{\partial_{n}} [\omega_{i}/\partial w] = \Sigma P_{i;}(\hbar) [\omega_{i}/\partial w]$ Ponctured
 $\rightarrow P(\hbar) = [P_{i;}(\hbar)]$ holo. on T, mero. on T
- $\delta(\hbar)$ horizontal section of vanishing integer homology bundle
> $\widehat{T}(\hbar) := (S_{\delta(\hbar)} \omega_{i}/\partial w_{j} ..., S_{\delta(\hbar)} \omega_{M}/\partial w)$
 $\Rightarrow \frac{d}{d\hbar} \widehat{T} = P \cdot \widehat{T}$ Picard-Fuchs equation
Solution: $[\omega/\partial w] = \sum_{k=0}^{\infty} \hbar^{\infty} (\ln \hbar)^{k} A_{\kappa\alpha}^{\omega} / \kappa!$ Asymptotics of cohomology near singularity $\hbar=0$

Hodge Structures 43 (Mixed) * see appendix B for mixed hodge structure of a singularity H^{+} 2 ر2 Filtration 2 ر ا H^3 ا ر 2 ا \mathbb{W}_{2} H^2 H^{2,0} 2 ر() ا ر ا W_2 Weight 0,1 0ر ا Н \mathbb{W} ı 0,0 H^{0} w_o F₄ F2 F_{0} F_3 Filtration Hodge

Semi-00 Hodge Structures:

 F_0 F_1 F_2 F_3 F_4 ...

*+ some other requirements

44

Variation of Semi-∞ Hodge Structure (VSHS) 45

Data: $(\mathcal{M}, \mathcal{E}, \nabla)$

M: Parameter space
E: locally free sheaf of Ou{th} modules

ie vector bundle w/ th-power series coefficients

∇: E→ Ω(M)⊗th E flat connection

Griffiths fransversality

• Other data: polarization $(\cdot, \cdot)_{\xi}: \xi \times \xi \longrightarrow \mathcal{O}_{\mathcal{U}} \{t_{i}\}$

B-Model VSHS LG Path $S_X e^{W/\hbar}$ 46 • Setup: LG potential $W: \stackrel{C}{X} \rightarrow C W/Versal unfolding W_{X}, \lambda \in \Lambda$ • Consider new `unfolding' $W_{\lambda, f_{h}}(x) = W_{\lambda}(x)/f_{h}(\lambda, f_{h}) \in \Lambda \times T'$ • fix $\lambda \in \Lambda'$: have fibration $\mathcal{K}_{\lambda}: V \to T'$, $\mathcal{K}'(f_{h}) = W_{\lambda, f_{h}}(0) := V_{f_{h}}$ - induces vanishing cohomology fibration $\pi_*: \mathcal{H}_{\pi} \longrightarrow \mathcal{T}_{\mathcal{I}} \quad \mathcal{H}_{*}^{-\prime}(\pi) = \mathcal{H}^{n-\prime}(V_{\pi})$ • Analytic solution of Gauss-Manin: $\Omega \in \Omega^{n}(x)$ $\begin{bmatrix} -2/dw \end{bmatrix} = \sum_{k>0} t_{n}^{d} (\ln t_{n})^{k} A_{kx}^{\omega} / k! \in \Gamma(\mathcal{H}_{\mathcal{X}}^{n-1})$ formally $= H^{n-1}(W_{\lambda}^{-1}(0)) \{ t_{\lambda} \}$ • $\mathcal{E} = H^{n-1}(W_{\lambda}^{-1}(0))\{\hbar\}$ • $\nabla = \nabla^{GM}$ • $\mathcal{M} = \bigwedge_{(\text{formal})}$

A-Model VSHS Quantum cohomology: new product on H (x): Paramertized (formally) by $X_{\chi} : H^{\bullet}(\chi) \times H^{\bullet}(\chi) \to H^{\bullet}(\chi) \{ \pi \}$ Deformed (formally) by π 8 ∈ H[•](x) ∖ • $\mathcal{M} = H(\chi)$ • $\mathcal{E} = H(X) \otimes \mathcal{O}_{\mathcal{U}} \{ h \}$ • $\nabla_X Y(x) = \nabla_0 X Y(x) + \frac{1}{\hbar} X * y Y$ (flat connection from Frobenius mfld structure) note: For trivial tangent bundle w/ usual flat connection, Product on $T\mathcal{M} \iff$ new flat connection

* Missing technical details

48 VSHS as Moving Subspace VSHS (M, \mathcal{E}, ∇) : Suppose \mathcal{M} simply connected $\mathcal{H} = \xi S \in \Gamma(\mathcal{E} \otimes \mathcal{O}_{\mathcal{H}} \mathcal{E}_{h}, \mathcal{H}^{2}) | \nabla S = 0 \mathcal{F} \qquad \text{flaurent series}$ [●] ∇ flat & $\pi_i(\mathcal{M})=0 \Rightarrow \mathcal{H} \cong \mathcal{E}_x \otimes \mathbb{C} \{ \hbar_i, \hbar_i \}$ adds \hbar_i' terms to \mathcal{E}_x Ex≅EseH | s(x) ∈ Ex3: extend Ex by flat sections -Ex chooses subspace of H w/ positive to roets • E is subbundle of trivial bundle $\mathcal{H}_{\mathcal{M}} := \mathcal{H} \times \mathcal{M}$ • Oppisite subspace: H[−] ⊂ H

 $\forall x \colon \mathcal{H} = \mathcal{H}^{-} \oplus \mathcal{E}_{x}$

- CET3/C submodule: only the terms - Hu= HXM subbundle of HM

VSHS >> Frobenius manifold !! 50 $\mathcal{O}_{\mathcal{M}}(\hbar)$ sheaf $f_{\text{connection}}$ \mathcal{P} olarization metric \mathcal{P} roduct on $T_{x}\mathcal{M}$ $(\mathcal{M}, \mathcal{E}, \nabla, (-, -)_{\mathcal{E}}) \Longrightarrow (\mathcal{M}, \mathcal{G}, \mathcal{K}_{X})$ base mfld • \hbar° terms: $\epsilon/\hbar\epsilon \cong \epsilon \hbar H^{-1} = \hbar H^{-1} + rivial!$ • for $\Omega_0 \in \hbar \mathcal{H}^-$, $(\Omega_0 + \mathcal{H}^-) \Lambda \mathcal{E}_X$ is 1 pt: (draw)<u>semi- ∞ period</u> map: $\Psi: \Omega_0 \mapsto (\Omega_0 + \mathcal{H}_-) \Lambda \mathcal{E} \in \Gamma(\mathcal{E})$ or "in" $\mathcal{E}/\hbar \mathcal{E}$ · Suppose X→ Tr VX Y(-Do) gives isomorphism TM = E/TE "miniversal" • connection ∇ on \mathcal{E} induces ∇ on $\mathcal{T} + \mathcal{H}^{-} \cong T\mathcal{H}$ $\nabla = d + \frac{1}{h}A$ -AED(End(to H)) gives product structure: $X *_{x}Y = Z \iff A_{z}|_{x} = A_{X*Y}|_{x} = A_{x}A_{Y}|_{x}$ (-,-) on ε/hε = TM yields g

Summary So Far:

A - Side:

- · Quantum cohomology is naturally a Frobenius mfld
- · Frobenius mfld encodes physics of CFT family
- B-side:
 - Physics of LG model ⇔ Singularity theory
 - Singularity theory \Rightarrow natural VSHS
 - · Quantum Cohomology has VSHS
 - •VSHS => Frobenius manifold

Conjecture: Mirror Symmetry For every o-model (defined w/ Kähler manifold), There is an LG-model (defined w/ quasihomogenous function) Such that their VSHS's are isomorphic

54 Restrict to Calabi-Yau Manifolds: • Kahler mfld X is Calabi-Yau if $C_1(TX) = 0$ (or, $K_X = \Lambda^n T^*X$ is trivial) Mirror symmetry takes special form for CY mflds Quasihomogenous polynomial $F(x_1, ..., x_n)$ has weights $\vec{\chi}: \lambda_1, ..., \lambda_n$: * F naturally defined on weighted projective space WCPZ -F'(0) defines smooth submanifold of $WCP_{\vec{X}}^n$ > F'(0) is calabi-yau under simple constraint on degrees / weights $(Y - LG \text{ correspondence} : if F'(o) (Y, L.G model <math>\cong \sigma$ -model on F'(o) "LG theory equivlent to strings propegating on vanishing set" mirror symmetry equates or-model on I CY-mfld to another Mirror symmetry is T-duality

55 Complex Deformations (B-model) · Almost complex structure J: TM -> TM JET MOTME D'(M, T'M) TM-valued 1-form · Deformations of J are <u>Closed</u>: TH_complex = H'(M, T"M) Kodira - Spencer class · paramertize complex deformations of CY mflds • Modulii space \mathcal{M}_{LG} bigger: $\mathcal{TM}_{LG} \cong \bigoplus_{P_{\mathcal{A}}} H(\mathcal{M}, \Lambda^{q} \mathcal{T}^{LO}_{\mathcal{M}})$ MLG is <u>Extended</u>/<u>Thickened</u> (<u>Y modulii space</u> "quantum version of M_{complex}" noncommunative cmplx deformations" A-model: TM Kähler = H'(M), Quantum cohomo = H (M) No extention needed for CY 3-folds (I think)

Mirror Symmetry for Calabi-Yau:

Mirror CY mflds exchange their (extended) modulii of Kähler deformations & (extended) modulii of Complex deformations

01...

Mirror CY mflds exchange their A&B twists

Preview: Tropical Geometry

tropical geometry => Curve counting => A-side ?? tropical geometry => B-side ??

58

Goal: Construct A&B side VSI-15's thru tropics isomorphism in tropics => isomorphism of VSHS3

Refrences: Books

- Michele Audin, An introduction to Frobenius manifolds, moduli spaces of stable maps and quantum cohomology, 1997
 - \circ Math: notes on above topics
 - o https://hal.archives-ouvertes.fr/hal-00129568/document
- Mark Gross, Tropical Geometry and Mirror Symmetry, 2011 (Chapter 2)
 - \circ Math: (somewhat terse) chapter on A/B models, basis of this talk
 - o http://www.math.ucsd.edu/~mgross/kansas.pdf
- Clay Mathematics Institute, Mirror Symmetry, 2003
 - Math and Physics: Reference tome of all things mirror symmetry. Somewhat hard to find things
 - \circ Chapter 16.4 gives physics account of path integrals => quantum cohomology
 - o http://www.claymath.org/library/monographs/cmimOlc.pdf

Refrences: Books

- Mark Gross, Dominic Joyce, & Daniel Huybrechts, Calabi-Yau Manifolds and Related Geometries, 2001, Section 2
 - Math: Reasonably readable. Emphasizes Kahler/complex deformations, though only for CY 3-folds.
 - o https://link.springer.com/book/10.1007/978-3-642-19004-9
- Ed Witten, Quantum Fields and Strings: A course for Mathematicians, Vol 2, 1999, Section "Dynamics of QFT", lectures 13-15
 - Physics: Account of RG picture. Covers similar physics as [Clay], though more streamlined
 - https://www.google.com/books/edition/Quantum_Fields_and_Strings/ wmB7SQAACAAJ?hl=en

Refrences: Books

61

- · Arnold, Dynamical systems VI: Singularity theory,
 - Math: Phenomenological account of singularity theory (few proofs). Reasonably quick to read, Arnold is good at writing.
 - o https://www.springer.com/gp/book/9783540637110
- V.I. Arnold, A.N. Varchenko & S.M. Gusein-Zade, Singularities of Differentiable Maps Volume II: Monodromy and Asymptotic Integrals, 2012
 - Math: More detailed account of above book. Has section on asymptotic oscillating integrals.
 - o https://www.springer.com/gp/book/9781461284086

Refrences: Papers

- 62
- Greene and Vafa, Calabi-Yau Manifolds and Renormalization Group flows, 1989
 Physics: Describes CY mflds as RG fixed points of LG models
- Vafa and Warner, Catastrophes and the classification of Conformal Theories, 1988
 Physics: Uses singularity theory to classify CFTs, derives ADE classification
- Vafa, Topological Mirrors and Quantum Rings, 1991
 - \circ Physics for Math readers: Survey style summary of mirror symmetry
- Griffiths, Periods of Integrals on Algebraic Manifolds, 1969
 - \circ Math: Survey of variations of hodge structures and period maps
- Cecotti, Girardello, and Pasquinucci, Singularity Theory and N=2 Supersymmetry, 1990
 Physics: Describes dictionary between singularity theory and LG model physics
- Witten, Mirror Manifolds and Topological Field Theory, 1991
 - \circ Physics: Notes on mirror symmetry in context of topological field theory
- Barannikov, Quantum Periods I: Semi-infinite variations of Hodge structures, 2000
 Math: Introduced VSHSs, On moduli space of noncommunative cmplx deformations

New symmetries;

 $\left(\Theta^{\pm}_{,}\overline{\Theta^{\pm}}\right) \xrightarrow{\mathbf{a},\mathbf{b}} \left(e^{i \mathbf{a},\mathbf{b}}_{,} e^{(-1)^{\mathbf{b}}_{,}} e^{(-1)^{\mathbf{b}}_{,}} \overline{\Theta^{\pm}}\right)$

"R-Symmetrics" Mixing these w/ normal rotation gives A/B twists

64 Appendix B: Singularity Hodge Structure $[\omega/df] = \sum_{k \ge 0} \pi^{a} (\ln \pi)^{n} A_{\kappa \times}^{\omega} / \pi!$ is smallest 方 Hodge filtration: Order of [w/df] for each fiber H"-(VH, C), tatte subspace Ft of elements w/ order < n-p-1

Weight filtration: let M be mononodromy on $H^{n}(v_{h})$ Fact: $\exists n, K s, t (M^{n} - I)^{K} = 0 : M^{n} - I is nilpotent$ every nilpotent operator N defines a filtration: $N = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_{2} \\ x_{n} \end{bmatrix} = \begin{bmatrix} x_{2} \\ x_{n} \end{bmatrix} N^{K} \begin{bmatrix} x_{1} \\ x_{n} \end{bmatrix} = \begin{bmatrix} x_{1}r_{1} \\ x_{n} \end{bmatrix} = \begin{bmatrix} x_{1$