Hamiltonian G-spaces Quantization (Blue will mean verbal explinations Black is written on the Board) this is the first talk in a reading seminar on the relative langlands program, for lawing the recent paper Relative Langlands Duality, by Ben-Zvi, Sakellaridis, and Venkatesh Where we're Going: Relative langlands program Langlands duality $Ordinary: G \longleftrightarrow \tilde{G}$ Lie groups reletive of the G-spaces (specifically, hyperspherical varie ties) the relative langlands program extends lang lands day lity from groups to spaces with a group action. Both the group & the space are dualized. in the puper, they conjecture the spaces are what they define as hyperspherical varieties. Today's Q: What (& why) are hyperspherical varieties? (BZSV sec. 3) Section 3 describes several ways to construct symplectiz spaces, defines hyperspherical varietics, & provides a uniform construction. I had some travble turning this into a talk, becaue it's not clear until later why we should care about hyperspherical varieties. -Builds on study of GGL²(X) for X spherical (sattellaridis - Ventratesn) BZSV brilds on older work by SV, where it's easter to get motivation for spherical /Hyperspherical manifolde

	Classica	Quantum
spare of states	symplectic manifold (M, ω)	hilbert space
Observables	fec"(M)	H: H -> H linear operator
lie algebra of observables	"poission bracket" Ef, g3:= Xf (g) infinitesimal Change in g along evolution by f	[A,B]:= AB-BA = d (etA) B(etA) infiniterimal Change in Babig evolution by A
Quantization hilbort span (C ^{od} (1) This is prove	h $(Dream)$; for (M, w) ce H & lie algebra M), $\{\xi, \}$ M	symplectic manifold construct homomorphism > (operators H-> X, [.]) F the time.
Geometric que A Beautiful i Specific sensirius	antization: construct X L w/ corveture dea, but it only ha (e.g Kahlar mflds).	as sections of line bundle the symplectic form W off works, only applies in 10,12()
Archatypical Motto: Quantiz	examples: M=T*X X compact to Lation Liheurizes symp	wher $\longrightarrow \mathcal{H} = \mathcal{L}(X)$ wher $\longrightarrow \mathcal{H} = \mathcal{H}^{0}(X, \mathcal{L})$ holomorphic sections plectic haflds

Part 2: G-actions G compact reductive lie group GGM means HgeG, 9: M-7 M diffeo. GGM is <u>symplectic</u> if Hg, g^{*} w= w i.e., G preserves symplectic structure ex: for any smooth action GGX, Quantizations for any GGX, the induced action GGT^{*}x m the induced action GGL²(x) is symplectic

This is a yord start but we want to be able to "last inside" GGM. need internal structure. get it w/ slight strugthening. GGM is hamiltunian it infitesimal action D: g → vect (M) is generated by humiltunians. L i.e. V VEQ, Dv = X M(v) for M(v) ∈ C(M) M(v) linear in v = M | pem ∈ g^H L a hamiltunian G-action on M <u>defined</u> by its moment map M: M→ g[#] fuct: M is equivariant map G ~ GA^{*} for ref. Ad^{*}: g^{*} - 7 g^{*} i.e. M(g·P)= Ad^{*}g M(P) ~ coadjoint action G GG g^{*} is basic model of all hamiltonian GGM

restrict & action to mainal torus: TG 0+ moment map is $M: O_K \rightarrow E^*$ orthogonally projecting to E^* note $\mathfrak{SU}(3)$ fixed points are exactly OLN2" wave sphere around Atiyah convexity thm => M: Ox > 2* has mage Convex hull of ativale was motivated by trying to reprove this reput Cot kindly 20's) using symplectic geo weyl orbit! Can draw flag manifolds! for su (a): flag manifold, are classified by a pt in 2*t. what could their associected representations be? Quantizing Ox: we need line bundle L whose convature is the simplectiz form was. By essentially gaus-bonnet this needs W_{R} to be integral: $\int W_{R} \in \mathbb{Z}$, or $c_{R} \in H^{2}(\mathcal{O}_{R}, \mathbb{Z}) \subset H^{2}(\mathcal{O}_{R}, \mathbb{R})$ fact: Wa integral iff a integral (belongs to the rout lattice) ex. 50(3) ex: So(3) in teger anna sphores fact: assocrated line bundle La defined by charecter &: T->C Quantum hilbert space GGH°(G/F, Lox) by Bonel-Weil thm, GGH° (G/1, Lor)= Ex, irriducible rep. w/ heighest wt x? Coadjoint orbit Quantize Ed Oa w/a integral irriducible rep w/ neighbot wt a motto: ccadizin + orbits are Trriduible

Symplectic reduction
Moment map
$$M: M \rightarrow g^{A}$$
 sends M to a collection of coadinf
decompose M aronating to their orbits:
• start $W/O_{0} = EO3$. $M^{-1}(0) \subset M$ is G-invaviant, so divide out
dotue the symplectic reaction $M/G = M^{-1}(0)/G$
This (marshon-verificitie) M/G has a symplectic structure
motivating Example: P' as symplectic reduction
 $M = T^{A} R^{2} = C^{2}, \quad w = dz, ad\bar{z} + dz_{a} d\bar{z}$.
 $U(0)$ action $e^{ib}: (z_{1}, z_{2}) \rightarrow (e^{ib}z_{1}, e^{-ib}z_{2})$ has $M: c^{2} \rightarrow U(0)^{A} \ge R$
 $u(0)$ action $e^{ib}: (z_{1}, z_{2}) \rightarrow (e^{ib}z_{1}, e^{-ib}z_{2})$ has $M: c^{2} \rightarrow U(0)^{A} \ge R$
 $physically, this decribes a 2D harmonic oscilator
 $U(0)$ action previous M , so might as well restrict to $M(0 = s^{2} \subset C^{2})$
 $define C^{A}/U(0)$ to be the "space of orbits with fixed energy"
 $C^{A}/U(0) := M^{-1}(U)/U(0) = S^{A}/U(0) = IP' = S^{2}_{c} symplectic!$
Remark: for G G X any G-action $W/X/G$ smathy
 $T^{*}X//G = T^{*}(X/G)$
Remark: dim $M/K = dim M-2dm G$
moths: in symplectic geometry. Groups act twice!$

The (Guillemin - Shlow stemberg): for M compact trahler

$$\mathcal{H}(M//_{0}G) = \mathcal{H}(M)^{6}$$
 G-invariant vectors in $\mathcal{H}(M)$
"Quantization commutes w/ reduction"

Multiplicities of coadoint orbits
Reduction along other coadjoint orbits: M// G = M(Oa)/G note dim (M// G)= dim M-2dim G + dim Oa
M splits into G-bundles over symplectic mfly, G C M (Ox) Paramortized by cadjoint orbits M//2G
$e_{X}: C^{2} = \bigcup_{\substack{X \in \{0, \infty\}}} S^{3}_{x} = \bigcup_{\substack{X \in \{0, \infty\}}} S^{2}_{x} = S^{2}_{x} S^{3}_{x} $ denotes sphares $d_{E}(e_{x}, \infty) = d_{E}(e_{x}, \infty) = S^{2}_{x} $ of radius d
Motto: moment map splits M into irriducible components O
Thm: (Guilleman Stemberg) The heighest weight representation GGE_{α} occours in $GGH(M)$ iff O_{α} occours in $M(M)$
COnsider spaces where decomposition is simple:
Det a hamiltonian space GGM is <u>multiplicity</u> -free it dim (M/xG)=0 tox
this only uses properness of A, follows finn then of Kirwan Mi (Oa) connected, using a bit of morse theory
⇒ GGM entirely charecterized by moment map image Convexity thms => GGM structure is combinatorial!
motto: multiplicity-free manifolds have maximal symmetry
Multiplicity-free examples 4: 8 + 9 + · Coadjoint orbits 0 (moment map 3 identity = 0 are irriducible)
• for GGG/K transitive group action, induced action GGT*(G/12) is undtiplicity - free for simple necessary & sufficient condition on G/K
• Toriz manifolds: T= U(i) ⁿ GM dim M=2n symplectic manifolds with effective half-dimnt torus actua
Atixah: moment map $M: M \rightarrow 2^* = \text{Lie}(T)^T \cong \mathbb{R}^n$ image is a convex polytope AJ*: TG 2* is trivial $\Rightarrow O_{\infty} = \varepsilon_{\infty} $: Condition to orbits are points
$M'(\alpha)$ is a torus $\Rightarrow M / \pi T = \ell Pt$

U(1)² G IP² M: IP² e.g $V(i) GS^2$ $S^2 C R^3 \longrightarrow t^2$ Thm the following are equivlent. · G G M multiplicity free G-invariant functions are determined by their values on M/2 G for all &, which is defined by their value on & which is defined by their value on ∞ • all G -invariant functions on M [ift from g^{*} i.e, $f \in C^{\infty}(M)^{6} \Rightarrow f = hoM$ he $C^{\infty}(g^{*})^{6} = C^{\infty}(\frac{2}{4})^{W}$ functions on dual curtain subalgebra 2* 12 poission commonative, so this sizes Quantum version: all G-invariant A.B: H-> H satisfy [A.B] =0 split He into irreps Vi. A G-invariant => { A preserves irrep type (A:V:->V: is scalar (schur's lemma) G-invariant operators commute => each irrep type has multiplicity </ 9 a G-invariant operator respects decomposition into G-inveps $M = V_1^{n_1} \oplus V_2^{n_2} \oplus \dots \quad A: V_i^{n_i} \to V_i^{n_i}$ by schovs lemma. A acts black - scalarly, interchanging G-invariant J J V_1 $[a_1, I]$ factors of V_i $A = V_1^{n_i} \oplus V_2^{n_2} \oplus \dots \quad V_i [a_{n-1}]$ factors of V_i $M = V_1^{n_i} \oplus V_2^{n_2} \oplus \dots \quad V_i [a_{n-1}]$ factors of V_i $M = V_1^{n_i} \oplus V_2^{n_2} \oplus \dots \quad V_i [a_{n-1}]$ factors of V_i $M = V_1^{n_i} \oplus V_2^{n_2} \oplus \dots \quad V_i [a_{n-1}]$ for V_i for V_i Thm (GS) GGT*X multiplicity free => each irrep in GGL2CN= 26(13) has multiplicity 5

for multiplicity-free spaces:

$$T^*X$$
 multiplicity free $\longrightarrow GGX$ transitive, or $X=G/K$
note GGX extends to complexified active G^*GX
Def: G^*GX is a special unity if it has an open dense orbit of the
Borel subgrave $B \in G^*$
ex: toric manifold
interior is B -orbit neves we all along moment polytope in Z^{*+} . This
takes we this the value manifold if $M/E = Pt$
Thum: TX multiplicity free $\leftarrow \Im X$ spherical
 T^*X are curchtype of hyperspherical if .
(i) M affine
(i) the G-stabilizer of a generic pt in M is counted
(ii) the G-stabilizer of a generic pt in M is counted
(iii) the G-stabilizer of a generic pt in M is mortal
indictions
indictions
 M_{1} the Gradializer of a generic pt in M is counted
(ii) the G-stabilizer of a generic pt in M is counted
(iii) the G-stabilizer of a generic pt in M is involued
indictions
indictions
Mota: - if M = T^*X, C^*gr scales fibres (needed structure for batter)
(i) implies $M(M) \cap Z^*$ scales fibres (needed structure for batter)
(ii) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iii) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^*$ contains $O, F M(O)$ is a G-orbit
(iv) implies $M(M) \cap Z^* = Z^*$ is even reconstruct $GGM(M)$ gradiag action from
local data of a point $X \in M^*(O)$

Building Multiplicity-free spaces
convert constructions from representation theory to symplectiz.
induced vepresentations
for H < 6, & rep exhauss we build the induct rep:
$$\operatorname{ind}_{H}^{e}(e)$$

 G/H is a symmetric G-space, $(F=SU(a), H=U(1), G/H=S^{2})$
 $H < G$ principle H-bundle
 G/H
using P, build accounted bundle $E_{P} = G/H \times_{H} V = G \times V/H$
 \Longrightarrow obtain G-rep: on sectors of E_{P} $\operatorname{ind}_{H}^{e}(e)^{\circ}$ $G \in L^{2}(e_{P})$
 G at b_{P} either inductions into f there in a finite dimensional rep.
Symplectiz analogies replace $H = GV$ w/ henitarium H-direce $H = GS$
 $\operatorname{Det} f$ the Hamiltonian indection is h_{P} ind $h = G \times T^{2}(h) = H^{2}(h) = H^{2}(h$

Whitlator induction G reductive, B a barel subgroup, U its uniPutent radizal $\begin{pmatrix} x & x \\ x & x \end{pmatrix} \qquad (x & x \\ x & x \end{pmatrix}$ (' *) I only Know this from withipedia lol a Whittater model of a representation p: G->V is a realization of p as a subrep of ind G(x) for X: U-IC all irreps U->C are charectors these are common! irreps w/ a whittaker model are "generic" mels w/o ____ ave "degenerate" these are interesting, "#-theoritic criters, that encompas must reps we care about symplectically: X defines hamiltonian action UGŰ fullowing symplectiz inductioni, we consider $(C \times T^*G)/U = \Psi$ C-principle bundle over T*(UNG) T*(UNG) Basic Whittaker space is Elle: Inisted cotangent bundle T* (U1G) (same topology, new symplectic form) Whitacre induction sends SQH to G-space using home. HxsLz->G the murphism sL2 -> & pictes out a unipotent UCG (assachted to paitive) eigenspace whittaker induction is himd Hu (S) or something ... note that I'm Kinda 1429 hore this interpolates between ordinary indiction & the twisted bundles of whithation space. Thm (3.6.) of relative lang lands program): All hyporspherital varieties are built by whittaker industry

Extra: Spherical Varieties
every GGM extends to G^CGM
infinitorianal action
$$g^{c} \rightarrow Vect(x)$$
 splits $g^{c} = g \circ c = g \circ 2g$
ex: uin GC extrus to C^{*}CoC
 $g \rightarrow \frac{1}{3} = \frac{1}{3} =$