Elliot Kienzle

$\begin{array}{l} \texttt{ekienzle@berkeley.edu} \\ (240) 534 \text{-} 8406 \end{array}$	104 S Brook Lane Bethesda, MD, 20814				
University of California, Berkeley Ph.D in Mathematics, 2022-Present					
University of Maryland, College Park (UMD) B.A. with high honors in Mathematics and Physics, graduated May 20					
E. Kienzle and S. Rayan, <i>Hyperbolic Band Theory through Higgs Bundles</i> . Published in <i>Advances in Mathematics</i> , Volume 409, Part B, 2022, 108664					
From Hyperbolic Crystals to Stable Bundles: Moduli spaces in spectral theory MSRI gauge theory graduate student seminar. Video (October 2022)					
Hyperbolic Band Theory through Higgs Bundles					
AMS Contributed Paper Session on Applied Topics - Quantum Theory, Mechanics, and Fluids, Joint Mathematics Meeting (April 2022)					
Geometry and Mathematical Physics Seminar at University of Saskatchewan (September 2021)					
Hyperbolic String Art, Berkeley Many Cheerful Facts seminar (September 2022) Showed a new way of visualizing Mobius transformations and hyperbolic geometry using string art					
A unified picture of BPS states, UMD research interaction team (RIT) in Geometry and Physics (April 2022)					
I unified the many manifestations of BPS objects using variations of Hodge structure					
The Seiberg-Witten solution, UMD RIT in Geometry and Physics (April 2022)					
Outlined in detail the Seiberg-Witten solution, which computes the effective field theory of $N=2$ supersymmetric yang mills, using geometry of the moduli space of vacua.					
Why is everything called BPS?, UMD RIT in Geometry and Physics (Febuaruy 2022) Introduced supersymmetric BPS states and BPS monopoles, then showed their equivalence following a paper by Olive and Witten					
"A tale of supersymmetry: The dark magic of integrable systems, UMD RIT in Geometry and Physics (January 2022)					
Motivated by N=2 supersymmetry, I toured through the many interconnected aspects of integrable systems.					
Topological Recursion, for Fun and Profit, UMD RIT in Geometry and Physics (Fall 2021)					
	 (240)534-8406 University of California, Berkeley Ph.D in Mathematics, 2022-Present University of Maryland, College Park (U B.A. with high honors in Mathematics and E. Kienzle and S. Rayan, Hyperbolic Band The Published in Advances in Mathematics, Volu From Hyperbolic Crystals to Stable Bundles: M MSRI gauge theory graduate student semin Hyperbolic Band Theory through Higgs Bundle AMS Contributed Paper Session on Applied and Fluids, Joint Mathematics Meeting (A Geometry and Mathematical Physics Semin ber 2021) Hyperbolic String Art, Berkeley Many Cheerfu Showed a new way of visualizing Mobius tr using string art A unified picture of BPS states, UMD researd and Physics (April 2022) I unified the many manifestations of BPS ob The Seiberg-Witten solution, UMD RIT in Geo Outlined in detail the Seiberg-Witten solu theory of N=2 supersymmetric yang mills, vacua. Why is everything called BPS?, UMD RIT in J Introduced supersymmetric BPS states an equivalence following a paper by Olive and "A tale of supersymmetry: The dark magic of etry and Physics (January 2022) Motivated by N=2 supersymmetry, I tource pects of integrable systems. Topological Recursion, for Fun and Profit, UM 				

		topological recursion in the context of JT gravity and random matrix in the general version of Eynard and Orantin.				
		Mirror Symmetry of Higgs Bundles and the Geometric Langlands Conjecture, UMD RIT in Geometry and Physics (Spring 2021)				
		Summarized Kapustin and Witten's gauge theoretic approach to the geometric Langlands conjecture.				
	A & B models; the Story of Mirror Symmetry, UMD RIT in Geometry and Physics (Fall 2020)					
	Described enumerative aspects of mirror symmetry. On the A-side, Gromov-Witten invariants and Frobenius manifolds. On the B-side, Landau-Ginzburg models through singularity theory, and the associated variation of Hodge structure.					
Honors and Awards	2022	John and Sabrina Kontner Endowed Scholarship Merit scholarship, University of Maryland Math department				
	2021	Higginbotham scholarship Awarded to one outstanding junior Mathematics major University of Maryland				
	2020	Strauss scholarship Awarded to one outstanding Mathematics major University of Maryland				
	2019, 2021	Angelo Bardasis Memorial Scholar Award Merit scholarship, University of Maryland Physics department				
	2018-2021	President's scholar, University of Maryland				
	2018-2021	Dean's list, University of Maryland				
	2018-2021	National merit scholarship				
Teaching and Outreach	Summer 2021	Interpreter at National Museum of Mathematics (MoMath) Worked as museum floor staff, explaining mathematical con- cepts to members of the general public				
	Fall 2022	Graduate student instructor (UC Berkeley) MATH 53: Multivariable calculus				
	Fall 2022	Directed Reading Program Mentor (UC Berkeley) Topics: Mirror symmetry, aspects of symplecitc and complex geometry				
	Summer 2021 Fall 2021	PCMI graduate summer school on illustrating mathematics Designed and taught UMD course <i>Geometry in Physics</i> Covered Maxwell's equations via differential forms and classical mechanics via symplectic geometry, at undergraduate level.				
Mathematical Physics						

Background

Summer 2022	Attended G	eometric	structures	(Re-)United,	a	confer-	
	ence/workshop on Higgs bundles and geometric structures						
Summer 2021	2 nd PIMS summer school on algebraic geometry in high-energy						
	physics						
Spring 2021	Reading course on Bott periodicity and spin geometry						
	With UMD Prof. Jonathan Rosenberg						
	Studied <i>Clifford Modules</i> by Atiyah, Bott, and Shapiro, and <i>Bott Periodicity and the Index of Elliptic Operators</i> by Atiyah						
						iyah	
Fall 2021	Reading course on classical and quantum 2D Yang-Mills theories						
	With UMD Prof. Richard Wentworth						
	Studied p	arts of Th	e Yang-Mills	Equations on Ri	iema	nn Sur-	
	faces by Atiya	ah and Bot	tt, and Shapi	ro, and On Qua	ntun	ı Gauge	
	Theories in T	wo Dimens	sions by Witt	en			